51 research outputs found

    The role of elasticity in simulating long-term tectonic extension

    Get PDF
    Author Posting. © Oxford University Press, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 205 (2016): 728-743, doi:10.1093/gji/ggw044.While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.This work was supported by NSF grants OCE-11-54238 (JAO, MDB), EAR-10-10432 (MDB) and OCE-11-55098 (GI), as well as a WHOI Deep Exploration Institute grant and start-up support from the University of Idaho (EM)

    Diffuse venting at the ASHES hydrothermal field : heat flux and tidally modulated flow variability derived from in situ time-series measurements

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 1435–1453, doi:10.1002/2015GC006144.Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ∌12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ∌6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m−2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.NSF Grant Numbers: OCE-1131772, OCE-1131455, OCE-1337473; University of Washington, and the NSF award Grant Number: OCE-09579382016-10-2

    Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q04008, doi:10.1029/2011GC003991.The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the “Pourquoi Pas”? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s−1 and 11.1 cm s−1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s−1 and 119 cm s−1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of 1.07 ± 0.66 MW, and, by incorporating previous estimates of diffuse heat flux density from Tour Eiffel, diffuse flux from the main sulfide mound of ∌15.6 MW. We estimate that the total integrated heat flux from the Tour Eiffel site is 19.82 ± 2.88 MW and that the ratio of diffuse to discrete heat flux is ∌18. We discuss the implication of these results for the characterization of different vent sites within Lucky Strike and in the context of a compilation of all available measurements of the ratio of diffuse to discrete heat flux.E. Mittelstaedt was supported by the International Research Fellowship Program of the U.S. National Science Foundation (OISE-0757920). Funding for the 2006, 2008, 2009, and 2010 cruises was provided by CNRS/ IFREMER through the MoMAR program (France), by ANR (France), the Mothseim Project NT05–3 42213 to J. EscartĂ­n and by grant CTM2010–15216/MAR from the Spanish Ministry of Science to R. Garcia and J. EscartĂ­n. T. Barreyre was supported by University Paris Diderot (Paris 7 – France) and Institut de Physique du Globe de Paris (IPGP, France).2012-10-1

    Mesure des champs de vitesse dans les champs hydrothermaux océaniques

    Get PDF
    Nous présentons une nouvelle méthode pour déterminer les champs de vitesse dans les champs hydrothermaux présents sur les fonds sous-marins. Basée sur le "background-oriented schlieren", la méthode permet de suivre les anomalies d'indice de réfraction dues à la température ou la composition. Elle a été testée sur des panaches thermiques en laboratoire, puis lors d'une campagne sur la dorsale atlantique

    The final stages of slip and volcanism on an oceanic detachment fault at 13°48â€ČN, Mid‐Atlantic Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 3115-3127, doi:10.1029/2018GC007536.While processes associated with initiation and maintenance of oceanic detachment faults are becoming better constrained, much less is known about the tectonic and magmatic conditions that lead to fault abandonment. Here we present results from near‐bottom investigations using the submersible Alvin and autonomous underwater vehicle Sentry at a recently extinct detachment fault near 13°48â€ČN, Mid‐Atlantic Ridge, that allow documentation of the final stages of fault activity and magmatism. Seafloor imagery, sampling, and near‐bottom magnetic data show that the detachment footwall is intersected by an ~850 m‐wide volcanic outcrop including pillow lavas. Saturation pressures in these vesicular basalts, based on dissolved H2O and CO2, are less than their collection pressures, which could be explained by eruption at a shallower level than their present depth. Sub‐bottom profiles reveal that sediment thickness, a loose proxy for seafloor age, is ~2 m greater on top of the volcanic terrain than on the footwall adjacent to the hanging‐wall cutoff. This difference could be explained by current‐driven erosion in the axial valley or by continued slip after volcanic emplacement, on either a newly formed or pre‐existing fault. Since current speeds near the footwall are unlikely to be sufficient to cause significant erosion, we favor the hypothesis that detachment slip continued after the episode of magmatism, consistent with growing evidence that oceanic detachments can continue to slip despite hosting magmatic intrusions.National Science Foundation (NSF) Grant Numbers: OCE‐1259218, OCE‐1260578, OCE‐17365472019-03-1

    Mid-ocean ridge jumps associated with hotspot magmatism

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 266 (2008): 256-270, doi:10.1016/j.epsl.2007.10.055.Hotspot-ridge interaction produces a wide range of phenomena including excess crustal thickness, geochemical anomalies, off-axis volcanic ridges and ridge relocations or jumps. Ridges are recorded to have jumped toward many hotspots including, Iceland, Discovery, Galapagos, Kerguelen and Tristan de Cuhna. The causes of ridge jumps likely involve a number of interacting processes related to hotspots. One such process is reheating of the lithosphere as magma penetrates it to feed near-axis volcanism. We study this effect by using the hybrid, finite-element code, FLAC, to simulate two-dimensional (2-D, cross-section) viscous mantle flow, elasto-plastic deformation of the lithosphere and heat transport in a ridge setting near an off-axis hotspot. Heating due to magma transport through the lithosphere is implemented within a hotspot region of fixed width. To determine the conditions necessary to initiate a ridge jump, we vary four parameters: hotspot magmatic heating rate, spreading rate, seafloor age at the location of the hotspot and ridge migration rate. Our results indicate that the hotspot magmatic heating rate required to initiate a ridge jump increases non-linearly with increasing spreading rate and seafloor age. Models predict that magmatic heating, itself, is most likely to cause jumps at slow spreading rates such as at the Mid-Atlantic Ridge on Iceland. In contrast, despite the higher magma flux at the Galapagos hotspot, magmatic heating alone is probably insufficient to induce a ridge jump at the present-day due to the intermediate ridge spreading rate of the Galapagos Spreading Center. The time required to achieve a ridge jump, for fixed or migrating ridges, is found to be on the order of 105-106 years. Simulations that incorporate ridge migration predict that after a ridge jump occurs the hotspot and ridge migrate together for time periods that increase with magma flux. Model results also suggest a mechanism for ridge reorganizations not related to hotspots such as ridge jumps in back-arc settings and ridge segment propagation along the Mid-Atlantic Ridge.Mittelstaedt, Ito and Behn were funded by NSF grant OCE03-51234 and OCE05-48672

    Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaics

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q04007, doi:10.1029/2011GC003990.Here we demonstrate with a study of the Lucky Strike hydrothermal field that image mosaicing over large seafloor areas is feasible with new image processing techniques, and that repeated surveys allow temporal studies of active processes. Lucky Strike mosaics, generated from >56,000 images acquired in 1996, 2006, 2008 and 2009, reveal the distribution and types of diffuse outflow throughout the field, and their association with high-temperature vents. In detail, the zones of outflow are largely controlled by faults, and we suggest that the spatial clustering of active zones likely reflects the geometry of the underlying plumbing system. Imagery also provides constraints on temporal variability at two time-scales. First, based upon changes in individual outflow features identified in mosaics acquired in different years, we document a general decline of diffuse outflow throughout the vent field over time-scales up to 13 years. Second, the image mosaics reveal broad patches of seafloor that we interpret as fossil outflow zones, owing to their association with extinct chimneys and hydrothermal deposits. These areas encompass the entire region of present-day hydrothermal activity, suggesting that the plumbing system has persisted over long periods of time, loosely constrained to hundreds to thousands of years. The coupling of mosaic interpretation and available field measurements allow us to independently estimate the heat flux of the Lucky Strike system at ~200 to 1000 MW, with 75% to >90% of this flux taken up by diffuse hydrothermal outflow. Based on these heat flux estimates, we propose that the temporal decline of the system at short and long time scales may be explained by the progressive cooling of the AMC, without replenishment. The results at Lucky Strike demonstrate that repeated image surveys can be routinely performed to characterize and study the temporal variability of a broad range of vent sites hosting active processes (e.g., cold seeps, hydrothermal fields, gas outflows, etc.), allowing a better understanding of fluid flow dynamics from the sub-seafloor, and a quantification of fluxes.This project was funded by CNRS/IFREMER through the 2006, 2008, 2009 and 2010 cruises within the MoMAR program (France), by ANR (France) Mothseim Project NT05-3 42213 to J. EscartĂ­n, and by grant CTM2010-15216/MAR from the Spanish Ministry of Science to R. Garcia and J. EscartĂ­n. T. Barreyre was supported by University Paris Diderot (Paris 7– France) and Institut de Physique du Globe de Paris (IPGP, France). E. Mittelstaedt was supported by the International Research Fellowship Program of the U.S. National Science Foundation (OISE-0757920).2012-10-1

    Drying colloidal systems: laboratory models for a wide range of applications

    Get PDF
    The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art

    Crime Scene Investigation, Mid-Atlantic Ridge: Deciphering the Role of Changes of Magmatic Injection Rate in the Death of Ocean Core Complexes

    No full text
    The ocean floor makes up more than two-thirds of Earth’s surface and hosts the planet’s largest continuous plate boundary, the mid-ocean ridge (MOR). The MOR marks the location where tectonic plates spread apart and new crust is formed, but the manner in which this crust forms is poorly known. Few constraints exist on the interplay between crustal faulting and magmatism, which is believed to exert a first order control on MOR evolution. We examine how the rate of change of magmatic activity may alter the style of faulting along a mid-ocean ridge using data collected in 2016 along the ~13°N Marathon Fracture Zone of the Mid-Atlantic Ridge and numerical models. We use a marker-in-cell, finite-difference code to simulate the oceanic crust and lithosphere as an elastic-plastic material spreading above a viscous asthenosphere. We impose a horizontal divergence equal to a fraction of the plate separation rate to simulate magma injection within the upper ~6 km of the crust, . Models were run with different rates of change in axial magma supply to test the hypothesis that the rate of change in magma supply along a MOR axis is an important controlling parameter on the style and lifetime of faults
    • 

    corecore