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S U M M A R Y
While elasticity is a defining characteristic of the Earth’s lithosphere, it is often ignored in
numerical models of long-term tectonic processes in favour of a simpler viscoplastic de-
scription. Here we assess the consequences of this assumption on a well-studied geodynamic
problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numer-
ical simulations of extension in elastoplastic and viscoplastic layers using a finite difference,
particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses
and extension rates, allowing us to quantify the role of elasticity on three key observables:
fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies,
simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure
accompanied by rapid fault rotation and an inverse relationship between fault life span and
faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere pro-
duce results that may qualitatively resemble the elastoplastic case, but depend strongly on the
product of extension rate and layer viscosity U × ηL. When this product is high, fault growth
initially generates little deformation of the footwall and hanging wall blocks, resulting in
unrealistic, rigid block-offset in topography across the fault. This configuration progressively
transitions into a regime where topographic decay associated with flexure is fully accommo-
dated within the numerical domain. In addition, high U × ηL favours the sequential growth of
multiple short-offset faults as opposed to a large-offset detachment. We interpret these results
by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate.
The key to understanding the viscoplastic model results lies in the rate-dependence of the
flexural wavelength of a viscous plate, and the strain rate dependence of the force increase
associated with footwall and hanging wall bending. This behaviour produces unrealistic de-
formation patterns that can hinder the geological relevance of long-term rifting models that
assume a viscoplastic rheology.

Key words: Mid-ocean ridge processes; Continental tectonics: extensional; Lithospheric
flexure; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

The Earth’s lithosphere is commonly defined as the outermost me-
chanical layer that can withstand large deviatoric stresses (∼102–
103 MPa) before it yields, either through brittle failure or more or

∗Now at: Lamont-Doherty Earth Observatory, Columbia University,
Palisades, NY 10964, USA.

less localized viscous creep (e.g. Murrell 1976; Goetze & Evans
1979; Watts & Burov 2003). Consequently, the brittle upper portion
of the lithosphere where tectonic faulting occurs does not undergo
diffuse viscous deformation at time scales characteristic of mantle
convection or plate boundary processes. In fact, the deformation
of the lithosphere is often described as being elastic. Short-term
tectonic processes occurring over seconds to months (e.g. seis-
mic wave propagation or coseismic stress changes) are accounted
for by linear elastic models (e.g. King et al. 1994; Segall 2010).
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Elasticity in rifting models 729

Linear elastic models are also used to describe some long-term
processes (105–107 yr) including lithospheric flexure in response
to seamount loading, subduction, and active faulting, which are all
well modelled by the deflection of a thin elastic plate (e.g. Watts
2001). Interestingly, elastic models often do a good job at predict-
ing flexural patterns even in regions where brittle failure is known
to be pervasive. For example, the long-wavelength topography of
outer rises near subduction zones is well predicted by elastic plate
models (e.g. Turcotte & Schubert 2002) even though widespread
normal faulting, indicative of brittle failure of the lithosphere, is
documented in these settings (e.g. Ranero et al. 2003; Zhang et al.
2014; Zhou et al. 2015). Elastic rheology therefore underlies the
behaviour of the lithosphere over a range of spatial and temporal
scales, and stress conditions.

Despite its importance in plate tectonic processes, elastic rhe-
ology is absent from many numerical geodynamic models, which
treat the lithosphere as a high-viscosity viscoplastic solid. This
description can be simpler to implement in a Stokes flow solver
because it does not require tracking the build-up of stresses over
time. Billen (2008) justified this ‘viscous approximation’ in models
of subducting slabs stating ‘over long times (greater than approx-
imately 1 Myr) the elastic response of the lithosphere and mantle
can be ignored and only the viscous or viscoplastic behaviour [can
be] considered’. However, it is not clear that this assumption is
valid in the cooler, more rigid parts of the lithosphere, where long
relaxation time scales allow elastic flexure to remain pronounced
up to ∼100 Myr following the onset of lithospheric loading (Watts
& Zhong 2000).

Further, Kaus & Becker (2007) showed that while elasticity has
little influence on the development of Rayleigh–Taylor instabilities
with viscosities and density contrasts representative of mantle con-
vection and sublithospheric flow conditions, incorporating elasticity
significantly changes the patterns of stress accumulation through-
out the model domain. One might therefore expect a key role of
elasticity in problems involving plate flexure and buckling instabil-
ities (Schmalholz & Podlachikov 1999; Kaus & Podlachikov 2006).
This has been confirmed in recent numerical modelling studies that
document the role of elasticity on the retreat and flexural behaviour
of subducting slabs (Farrington et al. 2014; Fourel et al. 2014). In
addition, models of long-term lithospheric deformation that involve
spontaneous strain localization (e.g. faulting, subduction initiation,
mountain building and rifting) may also be sensitive to the incor-
poration of elasticity due to its influence on stress accumulation
in the lithosphere. This study aims at identifying the consequences
of the viscoplastic approximation on a well-studied geodynamic
problem that involves both localized brittle failure and lithospheric
flexure: the growth of rift-bounding normal faults at extensional
plate boundaries.

Many numerical models of rifting do not include elasticity (e.g.
Behn et al. 2002; Allken et al. 2011, 2012, 2013; Gerya 2010b,
2013; Püthe & Gerya 2013) and treat the oceanic lithosphere or
brittle upper crust as a high viscosity viscoplastic layer. However, in
the context of long-term tectonic rifting models, the importance of
elasticity may be twofold. First, the relevant deformation time scale
in such models is not the duration of the simulation, but the life
span of individual normal faults, which can be as short as ∼104 yr
depending on geological parameters and extension rate (e.g. Buck
et al. 2005; Behn & Ito 2008). Second, numerous studies have
shown that normal fault evolution is controlled by the build-up of
elastoplastic stresses in the faulted layer (Forsyth 1992; Buck 1993;
Lavier et al. 2000; Lavier & Buck 2002). This build-up is generally
attributed to the flexural readjustment of the footwall and hanging

wall blocks in response to fault growth (Buck 1988; King et al.
1988; Weissel & Karner 1989), and has consequences for both fault
rotation (Olive & Behn 2014; Olive et al. 2014) and fault life span,
that is, whether a single fault can grow indefinitely or whether it
will be abandoned in favour of a new, spontaneously forming fault
(Forsyth 1992; Buck 1993; Lavier et al. 2000; Behn & Ito 2008).
It is therefore unclear to what extent a viscoplastic description of
the lithosphere will produce behaviours that are relevant for natural
extensional systems.

To address these issues, we compare numerical simulations of
extension carried out within the same numerical code, assuming
either a viscoplastic or an elastoplastic brittle layer. We identify and
interpret the discrepancies between the two sets of simulations with
the help of semi-analytical models of flexure in elastic and viscous
thin plates.

2 M E T H O D S

To assess the effect of elasticity on the development of normal faults,
we performed simulations of extension on a single fault in uniform
brittle layers of varying thicknesses over a range of extension rates,
both with and without elasticity. We systematically characterized
fault-induced topography, fault dip, and fault life span from each of
these simulations.

2.1 Numerical methodology

Our simulations were carried out using SiStER (Simple Stokes
solver with Exotic Rheologies), a 2-D finite-difference/particle-in-
cell code (Harlow & Welch 1965; Gerya & Yuen 2003, 2007) written
in MATLAB R©, and based on the methodology of Gerya (2010a).
This code relies heavily on MATLAB (built-in) functions and ca-
pabilities for vector operations, and achieves computation speeds
on par with standard serial compiled language codes. We solve for
conservation of mass, momentum and energy in a 2-D continuum
assuming material incompressibility:

∂vi

∂xi
= 0 (1)

∂σ ′
i j

∂x j
− ∂ P

∂xi
+ ρgi = 0 (2)

ρcP
DT

Dt
= ∂

∂xi

(
k

∂T

∂xi

)
, (3)

where vi , σ ′
ij and T denote velocities, deviatoric stresses, and tem-

perature, respectively (see Table 1 for a summary of notations).
Repeated indices imply summation and the first term in eq. (3) is
the material time-derivative of T. These equations are discretized
on an Eulerian (non-deforming) grid using a conservative finite
difference scheme on a fully staggered grid (Gerya 2010a; Duretz
et al. 2011). The matrix equation for the discretization is defined in
terms of the two velocity components and pressure, and then solved
using the direct ‘backslash’ solver in MATLAB. Non-linear terms
in eq. (2) are handled by performing Picard-type iterations at each
time step. During each Picard iteration, non-Newtonian viscosity
terms in the stress-strain rate relation (see Sections 2.2 and 2.3)
are updated using the strain rate from the latest velocity solution,
and then discretized to solve eq. (2) and obtain the next velocity
solution. This process is repeated until the strain rate field changes
by no more than 1 per cent in less than 10 per cent of the area of the
model domain.
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Table 1. Summary of parameter notations.

Symbol Definition Value

vi Velocity field with components (vx , vy )
P Pressure field
σ ′

ij, �σ ′
ij, Deviatoric stress tensor, stress increment

σ ′
II Second invariant of the deviatoric stress tensor

σ y, �σ y Yield stress, strength contrast between fault zone and intact lithosphere
ε̇I I Second invariant of the strain rate tensor
g Gravitational acceleration 9.81 m s−2

ρ Density field
ρR Density of the faulted layer and underlying asthenosphere 3300 kg m−3

ρO Density of the ocean layer 1000 kg m−3

�ρ Density contrast between the faulted layer and the overlying fluid layer 2300 kg m−3

T Temperature field
�t Time step
Z Viscoelastic ratio
G Shear modulus 10 GPa
ν Poisson’s ratio 0.5
E Young’s modulus 30 GPa
η Viscosity field
ηREF Reference viscosity (temperature-dependent)
ηPLAS Plastic viscosity
ηL Viscosity of the faulted layer 1024-25 Pa s
ηWEAK Viscosity of the sticky layer and asthenosphere 10−6 ηL

	̇ Rotation rate
U Full extension rate
H Faulted layer thickness
h Fault heave
hCRIT, εCRIT Critical offset and strain on the fault necessary for full cohesion weakening 100 m
εP Accumulated plastic strain
τH Healing time scale 3100 m U−1

CMAX, CMIN Maximum and minimum value of cohesion 135 and 0.01 MPa
μ Friction coefficient 0.53
θ Dip of the fault
α, αE, αV Flexural parameter, flexural wavelength of an elastic / viscous layer
D Flexural rigidity of an elastic layer
L Width of the numerical model

Advection is handled by moving tracer particles, which passively
carry material properties in the velocity field with a fourth-order
Runge–Kutta method (in space) over an advection time step �t.
The time step is set so that markers move only by half of the
smallest cell size during each time iteration (i.e. 50 per cent of
the Courant condition). Properties are passed between nodes and
particles through bilinear interpolation (Gerya 2010a). In particular,
the advection term in eq. (3) is handled by the motion of markers,
while the remaining diffusion equation is solved with an explicit
finite difference scheme.

2.2 Implementation of viscoelasticity

In order to close the system of conservation eqs (1)–(3), we assume
a Maxwell linear stress-strain rate relationship of the form

ε̇i j = 1

2η
σ ′

i j + 1

2G

Dσ ′
i j

Dt
. (4)

This type of material behaves elastically when deformed over a time
scale shorter than its Maxwell characteristic time τM

τM = η

G
. (5)

Following Moresi et al. (2003), we discretize the Eulerian part of

the material derivative
Dσ ′

i j

Dt using backward finite difference over

the advection time step �t, yielding

ε̇i j = 1

2η
σ ′

i j + 1

2G

σ ′(t)
i j − σ ′(t−�t)

i j

�t
. (6)

From eq. (6), we can rewrite the stress–strain relationship at time t:

σ ′
i j = 2ηZ ε̇i j + (1 − Z ) σ ′

i j
(t−�t) (7)

in which we introduce a viscoelastic ratio Z

Z = G�t

G�t + η
. (8)

Upon inserting eq. (7) into eq. (2), conservation of momentum can
be rewritten as

∂

∂x j

(
2ηZ ε̇i j

) − ∂ P

∂xi
+ ρgi = − ∂

∂x j

[
(1 − Z ) σ ′

i j
(t−�t)

]
. (9)

In this formulation, the viscoelastic ratio acts to modify the effective
viscosity (ηZ) in the stress divergence term, and the elasticity terms
appear as a stress history term on the right-hand side. If one sets a
viscosity η that is high enough such that η � G�t (i.e. �t � τM),
the material effectively behaves elastically (Z ≈ 0). By contrast,
setting an unrealistically high shear modulus such that G�t � η

turns off all elastic effects (Z ≈ 1). This framework allows distinct
portions of the numerical domain to behave in a purely viscous,
purely elastic, or in a viscoelastic fashion. It also enables direct
comparisons of simulations with and without elasticity.
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Elasticity in rifting models 731

Deviatoric stress is carried on particles (Gerya 2010a; Keller
et al. 2013). Every time a velocity solution is obtained, the current
strain rate field is used to update the deviatoric stress σ ′

ij
( t−�t) by

adding the stress increment �σ ′
ij, (after eq. (7)):

�σ ′
i j = Z

[
2ηε̇i j − σ ′

i j
(t−�t)

]
. (10)

The stresses are then advected with the particles and rotated using
the local rotation rate 	̇ :

	̇ = 1

2

(
∂vy

∂x
− ∂vx

∂y

)
, (11)

and the following rotation formulae over a time step �t (Gerya
2010a):⎧⎪⎪⎨
⎪⎪⎩

σ ′ROTATED
xx = σ ′

xx

[
cos2

(
	̇�t

) − sin2
(
	̇�t

)]
−σ ′

xy sin
(
2	̇�t

)
σ ′ROTATED

xy = σ ′
xx sin2

(
	̇�t

) + σ ′
xy cos

(
2	̇�t

) . (12)

2.3 Implementation of plasticity for simulating faulting

In addition to the modifications due to the elastic terms, the effective
viscosity η used in eq. (9) can also be modified to account for non-
Newtonian material creep and plasticity. We account for material
plasticity by lowering the effective viscosity wherever the second
invariant of the deviatoric stresses (σ ′

II) exceeds the yield stress (σ y).
This is done by harmonically averaging the prescribed (Newtonian)
reference viscosity ηREF with a ‘plastic viscosity’ ηPLAS (e.g. Behn
et al. 2007):

η =
(

1

ηREF
+ 1

ηPLAS

)−1

, (13)

where ηPLAS depends on the yield stress and the second invariant of
the strain rate:

ηPLAS = σy

2ε̇II
. (14)

The yield stress is calculated using a Drucker–Prager failure crite-
rion:

σy = APL + B, (15)

where PL is the lithostatic part of the pressure field, estimated by
integrating the weight of the overlying material. The constants A
(0.47) and B (120 MPa) are chosen to approximate a Mohr–Coulomb
criterion (with lithostatic mean stress) with a friction coefficient
μ = 0.53 and initial cohesion CMAX = 135 MPa.

Plastic strain accumulates wherever the failure criterion (eq. 15)
is met, following:

∂εP

∂t
=

{
ε̇II if σ ′

II ≥ σy

0 if σ ′
II < σy

}
− εP

τH
(16)

where σ ′
II designates the second invariant of the deviatoric stress

tensor. ε̇II is the second invariant of the strain rate tensor, which
in yielded zones is approximately equal to the plastic strain rate.
The second term on the right-hand side of eq. (16) simulates a
healing mechanism (Poliakov & Buck 1998), which progressively
reduces the accumulated plastic strain over a relatively long-time
scale (τH). This formulation promotes the build-up of plastic strain
in regions of sustained localized shear (high strain rate) and healing
in regions of diffuse plastic yielding. In this study, the healing time
is scaled with the extension rate such that U × τH = 3100 m.

This is done to prevent excessive fault healing in simulations with
very slow extension rates, which must be carried out over a much
longer time to reach the same amount of total extension. Rapid fault
healing helps to sustain localized deformation within narrow fault-
like zones. It also enables deformation to relocalize quickly onto a
new fault when an older fault is abandoned.

To further promote strain localization, cohesion is decreased lin-
early with accumulated plastic strain (εP) until a critical plastic
strain (εCRIT) corresponding to an amount of fault slip (hCRIT) is
reached (e.g. Lavier et al. 2000), at which point cohesion (initially
CMAX) reaches a minimum value (CMIN). Since the width of local-
ized shear zones in continuum mechanics models is typically ∼3
elements, we adapt the value of εCRIT to the grid size so that full
fault weakening corresponds to a critical fault offset hCRIT, which
does not depend on grid resolution (Lavier et al. 2000). Specifically,
εCRIT is set to hCRIT divided by 3 times the grid size. The simulations
presented here use hCRIT = 100 m, which enables fast weakening
and rapid strain localization.

Finally, in eq. (13), ηREF can be set by a material flow law relating
it to temperature, pressure, strain rate and additional parameters
such as grain size. In this study, we restrict ourselves to a simple
temperature-dependent Newtonian flow law:

log10 (ηREF) = log10 (ηWEAK) + 1

2
log10

(
ηL

ηWEAK

)

×
[

1 − 2

π
tan−1

(
T − TC

wT

)]
. (17)

This functional form ensures that any material that is colder than
TC = 600 ◦C and is not undergoing plastic yielding will be assigned
a high viscosity ηL, whereas material hotter than TC is assigned a
low viscosity ηWEAK. A small value of wT (1 ◦C) ensures a sharp
drop in viscosity at the 600 ◦C isotherm.

2.4 Model setup

The model consists of a brittle (faulted) lithosphere layer of thick-
ness H = 10–30 km sandwiched between two weak layers of equal
thicknesses (comparable to H) representing an overlying ocean
(also referred to as a ‘sticky’ layer, Crameri et al. 2012) and
underlying asthenosphere (Fig. 1). Ocean and rock densities are
ρO = 1000 kg m−3 and ρR = 3300 kg m−3

, respectively. Hor-
izontal extension is imposed symmetrically on the two vertical
sides at full rates U = 0.02–20 cm yr−1. All boundaries are free
slip. The top and bottom have prescribed influx conditions so as to

Figure 1. Schematic setup of our numerical models for fault evolution in an
elastoplastic or a viscoplastic layer sandwiched between two viscous layers.
A single 50◦-dipping fault is seeded at the first time iteration as a thin band of
low-cohesion material, and then allowed to evolve freely as strain localizes
along this narrow shear band.
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balance the flux out the sides. New markers are added to the domain
wherever the marker density drops below 80 per cent of its initial
value. These ‘reseeded’ markers are assigned properties that are
interpolated from nodal values, or averaged from the properties of
neighbouring markers (for quantities that are never passed to and
modified on nodes, such as plastic strain or deviatoric stresses).

The flow law in eq. (17) defines the geometry of the layers based
on the temperature field, with the 600 ◦C isotherm acting as the
approximate brittle–ductile transition that marks the base of the
faulted layer. The initial temperature field increases linearly with
depth in the brittle layer and asthenosphere, with gradients set to
produce the desired brittle layer thickness. Temperature throughout
the sticky (top) layer is maintained at 0 ◦C. Conservation of energy
(eq. 3) is solved assuming adiabatic sides and Dirichlet boundary
conditions along the top (T = 0 ◦C) and bottom (T = 1000 ◦C).
We use a thermal diffusivity (k /ρcP) that is uniform throughout
the domain and set to 10−5 m2 s−1. This value is an order of mag-
nitude greater than that expected in geological systems, and high
enough to maintain a linear thermal gradient in the lithosphere and
asthenosphere as extension proceeds. This setup allows the faulted
layer to retain its initial thickness H while it is extended by amounts
much greater than H, over a wide range of extension rates. This
simplifying assumption enables direct comparisons with the classic
study of finite extension in a constant-thickness elastoplastic layer
of Lavier et al. (2000).

Following eq. (17), the brittle layer (T < 600 ◦C) has a uni-
form viscosity ηL (set to 1024 or 1025 Pa s depending on the sim-
ulation), while the asthenosphere (T ≥ 600 ◦C) has a viscosity
ηWEAK = 10−6 × ηL. We impose a uniform low viscosity ηWEAK in
the sticky layer. The shear modulus of the two weak layers (sticky
layer and asthenosphere) is set to the unrealistically high value of
1019 GPa, resulting in a very short Maxwell time (eq. 5), which
ensures that they behave viscously. Simulations with an elasto-
plastic faulted layer use a Young’s modulus and Poisson’s ratio of
E = 30 GPa and ν = 0.5 (incompressible) in the faulted layer,
yielding G = 10 GPa, and a Maxwell time of 3–30 Myr for the
lithosphere. By contrast, simulations with a viscoplastic (no elastic-
ity) faulted layer were carried out with a shear modulus of 1019 GPa
throughout the domain.

To ensure that a single normal fault develops in the center of
the model domain, we initialize the model with a rectangular (one
element-wide) ‘fault seed’ dipping at an angle θ0 = 50◦ throughout
the faulted layer. This orientation is compatible with the model setup
and assumed plastic properties (Kaus 2010). Within the fault seed,
plastic strain is set to its critical value εCRIT, and cohesion is fully
weakened accordingly. The box width (L) is set to three times the
elastic flexural wavelength of the faulted layer αE, which is given by

αE =
(

4D

�ρg

) 1
4

, (18)

where �ρ = 2300 kg m−3 is the density contrast between the
faulted layer and the overlying ocean, and D is the flexural rigidity
of the elastic layer:

D = E H 3

12 (1 − ν2)
. (19)

For faulted layers with viscoplastic rheology, the reference box
width is the same as their elastoplastic counterparts to allow for
direct comparison; subsequent calculations include wider boxes as
motivated by the initial findings. The grid resolution close to the
fault is refined to ∼1 km or less (<500 m in cases with H < 15 km).

Table 2. Summary of numerical simulations. ‘Faulting regime’ denotes
either ‘prolonged slip’ (∞) on the initial fault, or ‘multiple faults’ (MF)
forming in sequence. For MF simulations, the maximum horizontal offset
accommodated on the initial fault is indicated in parentheses.

Name Elasticity? ηL H U L Faulting
(Pa s) (km) (cm yr−1) (km) regime

E10slow On 1025 10 0.2 84 ∞
E10ref On 1024 10 2 84 ∞
E10fast On 1024 10 20 84 ∞
E20slow On 1025 20 0.2 140 MF (14 km)
E20ref On 1024 20 2 140 MF (13 km)
E20fast On 1024 20 20 140 MF (13 km)
E30slow On 1025 30 0.2 190 MF (6 km)
E30ref On 1024 30 2 190 MF (4 km)
E30fast On 1024 30 20 190 MF (5 km)

V10slow Off 1024 10 0.2 84 ∞
V10slow 25 Off 1025 10 0.2 84 MF (14 km)
V10ref Off 1024 10 2 84 MF (15 km)
V10fast Off 1024 10 20 84 MF (10 km)
V20slow Off 1024 20 0.2 140 ∞
V20ref Off 1024 20 2 140 MF (46 km)
V20fast Off 1024 20 20 140 MF (9 km)
V30slow Off 1024 30 0.2 190 Incomplete

localization
V30ref Off 1024 30 2 190 MF (15 km)
V30fast Off 1024 30 20 190 MF (10 km)

E10fast LB On 1024 10 20 252 ∞
V10slow LB Off 1024 10 2 252 ∞
V10fast LB Off 1024 10 20 252 MF (9 km)

3 N U M E R I C A L R E S U LT S

Numerical simulations reaching up to 22 km of total extension
were performed for 19 cases varying different model parameters
including H, U and ηL. Model parameters for all simulations are
summarized in Table 2. Note that the ‘slow’ (U ≤ 0.2 cm yr−1)
elastoplastic runs require a higher ηL (1025 Pa s) to ensure that the
duration of the entire simulation remains shorter than the Maxwell
time of the faulted layer (and the layer therefore remains elastic
throughout the run).

3.1 Generic model behaviour

In 18 out of 19 simulations (Table 2), the applied extensional strain
localized spontaneously onto the 50◦-dipping fault seed at the cen-
tre of the brittle layer, within the first few time iterations. This
results in a ∼3 element wide fault zone of reduced strength where
plastic strain increases rapidly (Fig. 2). As the fault accumulates
horizontal offset (h), the adjacent blocks undergo flexure (espe-
cially the footwall), and topography grows (Figs 2a and b). Tensile
and compressional bending stresses accumulate in the bottom- and
top-half of the footwall block, respectively. These stresses reach the
yield strength (hundreds of MPa) in a large part of the faulted layer
(Figs 2g and h). Consequently, the layer viscosity is reduced below
its ‘unyielded’ value of ηL, which is indicative of widespread diffuse
yielding (Figs 2e and f). Yielding is initially too distributed (and the
strain rate is too low) for plastic strain to accumulate significantly
outside of the initial fault zone (Figs 2c and d). However, in some
cases where high footwall stresses are sustained (e.g. Figs 2f and h)
failure can become localized and lead to the formation of a second
fault. The second fault will then replace the initial fault and take up
the full plate separation (e.g. Figs 3a–c, h, i, k and l).
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Elasticity in rifting models 733

Figure 2. Comparison of an elastoplastic (left-hand column) and a viscoplastic (right-hand column) simulation with H = 10 km, U = 2 cm yr−1, and
ηL = 1024 Pa s, after 10 km of extension. (a) and (b): Internal deformation in the faulted layer, visualized through the folding of initially horizontal, 2-km-thick
strata. (c) and (d): Accumulated plastic strain revealing fault rotation from an initial angle of 50◦. (e) and (f): Layer viscosity revealing localized yielding in the
fault zone and diffuse yielding outside the fault zone, wherever viscosity is lower than 1024 Pa s. BDT, brittle–ductile transition (600 ◦C isotherm). (g) and (h):
Second invariant of the deviatoric stress tensor showing the distribution of flexural stresses.

We call this behaviour the ‘multiple faults’ regime (Lavier et al.
2000), as opposed to cases where the initial fault slips indefinitely
without being abandoned, which we refer to as the ‘prolonged slip’
regime (e.g. Figs 3d–f, j). While the distribution of stresses around
the initial fault look qualitatively similar between elastoplastic and
viscoplastic simulations (Figs 2g and h), the geometry of the yielded
zone may show striking differences. For example, slip along a fault
in a 10-km thick elastoplastic brittle layer at 2 cm yr−1 results in
diffuse weakening of the footwall and hanging wall in close prox-
imity to the fault (Fig. 2e), which does not localize to form a new
fault. By contrast, the same simulation in a viscoplastic layer does
not produce weakening adjacent to the fault, but rather about 30 km
away in the footwall (Fig. 2f). This initially diffuse yielded zone
eventually localizes into a new fault that takes up the entire plate
separation. In other situations the second fault can form on the
hanging wall side by a similar mechanism (Fig. 3). This suggests

that the formation of a second fault occurs under a very different
set of parameters in viscoplastic versus elastoplastic simulations.

In the following sections, we report on specific differences be-
tween viscoplastic and elastoplastic models regarding the growth
of topography (Section 3.2), the rotation of the initial fault (Sec-
tion 3.3), and the modes of extensional faulting (Section 3.4). To
study topographic growth and fault rotation, we focus on the growth
of the initially seeded fault focusing primarily on simulations that
allow prolonged slip on the initial fault (i.e. utilizing thinner faulted
layers, as detailed in Section 3.4).

3.2 Fault-induced topography

In all simulations with an elastoplastic rheology, the relief associ-
ated with fault growth systematically features a short wavelength

 at M
B

L
W

H
O

IL
ibrary on M

ay 31, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


734 J.-A. Olive et al.

Figure 3. Snapshots of internal deformation after 22 km of extension in several elastoplastic (a)–(f) and viscoplastic (g)–(l) simulations with varying faulted
layer thickness and extension rate. The darker-green strata were initially 2 km thick, and lying horizontally at the beginning of the simulation. The lightest-green
layer is the asthenosphere, separated from the faulted layer by the 600 ◦C isotherm. MF, multiple faults regime; ∞, prolonged-slip regime (see Fig. 6). All
simulations have ηL = 1024 Pa s. Panels (e) and (k) correspond to the simulations shown in Fig. 2, at a later time.

(a) (e) (i)

(b) (f) (j)

(c) (g)

(d) (h)

(k)

Figure 4. Topography (black lines) induced by 2, 4 and 6 km of horizontal offset on a normal fault growing at different extension rates in a H = 10-km-thick
layer of varying rheology: (a) and (c) elastoplastic (numerical model), (d) purely elastic (analytical, with a displacement discontinuity at the fault), (e)–(h)
viscoplastic (numerical) and (i)–(k) purely viscous (analytical). The thin red lines show the analytical solution (eq. 20) with the value of flexural wavelength α

(in red) that best fits the numerical solution.

(∼h) component corresponding to the fault scarp, and a longer
wavelength decay of topography away from the fault. The lat-
ter component is well described as the flexure of a thin elas-
tic plate under gravity (e.g. Weissel & Karner 1989; Olive &
Behn 2014), with deflection that is anti-symmetric about the
fault and decays within a few tens of km away from the fault

(Figs 4a–d). The characteristic length scale of topographic decay
increases systematically with faulted layer thickness (Fig. 3). In
addition, the topography in all elastoplastic runs appears to be
solely a function of the amount of horizontal extension accom-
modated on the fault, and is largely insensitive to the rate of
extension.
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The viscoplastic simulations also predict the short wavelength
topography associated with the fault offset (fault scarp). Unlike the
elastoplastic cases, however, the viscoplastic models predict a long-
wavelength topography that is strongly sensitive to extension rate
and the total amount of extension. At low extension rates and large
fault heaves (U = 0.2 cm yr−1 and h = 4 and 6 km, Fig. 4e), the
model domain is wide enough to encompass the long-wavelength
topography and the viscoplastic model predicts topographic decay
with distance from the fault that is qualitatively similar to the flexu-
ral topography of the elastoplastic cases. At higher extension rates
and small fault heaves (e.g. U = 20 cm yr−1 and h = 2 km, Fig. 4g),
however, the model domain is too narrow to capture the longer-
wavelength decay of fault topography and the surfaces on the two
sides of the fault appear to be offset like rigid blocks. As the fault
accumulates more offset, the topographic decay systematically be-
comes more pronounced within the model domain. This evolution
is apparent in Fig. 4(g), where the topography is flat on both sides
of the fault scarp after h = 2 km of extension (rigid blocks), but
later (h ≥ 4 km) develops significant curvature. After ∼6 km of
extension the decay of topography away from the fault has become
qualitatively similar to that predicted by the elastoplastic results
(Fig. 4c). The transition between the initial rigid block phase and
the onset of pronounced topographic decay requires less slip on the
fault for lower extension rates (Figs 4e and f). Further, a simulation
conducted with a slow (0.2 cm yr−1) extension rate, but a higher
faulted layer viscosity (ηL = 1025 Pa s, simulation V10slow 25 in
Table 2), produced rigid block behaviour at fault heaves as large
as ∼2 km. This suggests that greater fault slip is required to exit
the rigid block phase for greater layer viscosity. The behaviour de-
scribed above is observed over the whole range of simulated brittle
layer thicknesses. In thicker layers, the characteristic length scale
of topographic decay also decreases progressively with heave, but
remains overall greater than that of thinner layers.

Finally, we tested the effect of layer viscosity on the development
of topography. We find that a simulation with a faulted layer viscos-
ity reduced by a factor of ten, but an extension rate that is increased
ten times relative to another simulation, will produce the same to-
pography as the other. This is illustrated by simulations V10slow 25
(ηL = 1025 Pa s, U = 0.2 cm yr−1) and V10ref (ηL = 1024 Pa s,
U = 2 cm yr−1), in Table 2 and Figs 4(f) and (h). The evolving
topography of a given run is therefore likely determined the product
U × ηL rather than by the extension rate alone.

3.3 Fault dip

To assess the effect of lithospheric rheology on fault rotation kine-
matics, we measured the evolving dip of the seeded fault throughout
all the runs by visually fitting a line through the region of greatest
accumulated plastic strain (Figs 2c and d). In the elastoplastic cases,
all faults are found to immediately begin rotating to a shallower dip
(≤40◦) over a few km of accumulated heave. The rate of change
in fault dip per unit of accumulated heave (∂θ /∂h) was greatest
in thinner brittle layers, which is consistent with the mechanical
models presented in Olive & Behn (2014) and Olive et al. (2014).
However, for a given layer thickness, the rotation rate (∂θ /∂h) does
not change with extension rate U in a systematic manner (Fig. 5a).
For example, we measured an average rate of ∼2 (±0.1)◦ km−1 over
the first 5 km of extension in all elastoplastic runs conducted with
a 10-km-thick faulted layer.

In viscoplastic layers, however, the rotation rate appears to de-
pend on both U and H, with faster extension rates and thicker

layers promoting slightly slower rotation (Figs 5b–d). For example,
in cases with H = 10 km (Fig. 5b), the initial fault rotates at a
rate of ∼2.1(±0.1)◦ km-1 over the first 5 km of extension when
U = 0.2 cm yr−1 (similar to the rate found in the corresponding
elastoplastic simulations). By contrast, ∂θ /∂h drops to 1.6(±0.1)◦

km–1 in cases when U is increased to 20 cm yr−1 (Fig. 5b). Likewise,
the rotation rate drops by ∼30 per cent when doubling the faulted
layer thickness in runs with U = 2 cm yr−1 (Fig. 5d).

3.4 Fault life span

We next examine the longer-term evolution of the simulations, and
report on the parameter combinations that favour the multiple faults
regime (in which a new fault breaks and the initial fault is aban-
doned) versus the prolonged slip regime (in which the seeded fault
never ceases to grow).

In elastoplastic layers, the prolonged slip regime occurs for layers
thinner than 20 km (Fig. 6a). In this regime, sustained fault growth
drives progressive flexural readjustment of the footwall, resulting
in a domal structure in which the fault surface is convex up (much
like a core complex in Buck 1988) near where it emerges at the
surface, and transitions to concave up near the top of the fault scarp
(e.g. Fig. 3d). The applied extension rate has little influence on
the development and morphology of the long-lived fault, however
for U = 2 and 20 cm yr−1, secondary faults, which accumulate
only minor total offsets, form in the footwall of the primary fault
(Figs 3e and f). These secondary features are common in models of
core-complex formation and are typically attributed to elastoplastic
flexure in the footwall (Lavier et al. 2000).

For H = 20 km (Fig. 6a), the multiple fault regime occurs, and
is characterized by the formation of a second normal fault after the
initial one has accommodated ∼13 km of extension (e.g. Fig. 3a).
The new fault crosscuts the initial one, and systematically dips in
the opposite direction. This behaviour persists for extension rates of
0.2–20 cm yr−1 (Figs 5a–c). In thicker faulted layers (H = 30 km),
the life span of the initial fault is even shorter (∼5 km of accom-
modated extension), and does not change systematically with U.
These results suggest that the transition from the prolonged slip to
the multiple fault regime is mostly independent of extension rate
and lies between H = 10–20 km (Fig. 6a). The results are also con-
sistent with findings of previous studies that larger offsets occur on
individual faults cutting through thinner elastoplastic layers (Buck
1993; Lavier et al. 2000; Lavier & Buck 2002; Behn & Ito 2008).

The transition between the two different fault life span regimes
is very different in the viscoplastic simulations (Fig. 6b). The only
two viscoplastic simulations that yielded prolonged slip on the ini-
tial fault were those carried out with the slowest extension rate of
U = 0.2 cm yr−1, and H = 10 and 20 km (Figs 3j and 6b). The
structures formed in these runs look qualitatively similar to those
produced in their elastoplastic counterparts. By contrast, simula-
tions carried out with thicker faulted layers and/or faster extension
rates all produced multiple faults (Figs 3h, i, k and l). Specifically,
for a given H, we found that the faster the extension rate, the more
faults formed to accommodate the same total amount of extension
(Figs 3h versus i, and j versus k and l). Extension in 30-km-thick
viscous layers proceeds by a succession of crosscutting faults on
both plates, while extension with H = 20 km proceeds by parallel
faults on the same plate that are a few tens of km away from each
other. Further, in one of the viscoplastic simulations with H = 30 km
(V30slow in Table 2, with H = 30 km and U = 0.2 cm yr−1, panel
A in Fig. 6), a shear band never cut through the full brittle layer,
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(a) (b)

(c) (d)

Figure 5. Fault rotation as a function of heave in 10-km-thick (a) elastoplastic and (b–c) viscoplastic layers, for the two extension rates labelled in (a). Model
domain width in (b) is the same as in (a) for direct comparison, but is three times wider in (c) as motivated in Section 4.1. The diamonds and dashed lines
indicate numerical results carried out with ηL = 1024 Pa s, and the solid lines refer to analytical models (Section 4.2) for ηL = 1024 (thick lines) and 1023 (thin
lines) Pa s. The colour code in (b–c) corresponds to varying extension rates. (d) Effect of layer thickness on rotation kinematics in viscoplastic runs. Black
symbols correspond to runs carried out with a 20-km-thick faulted layer; solid lines are as in (b) and (c).

but instead deformation localized on the fault seed within only the
shallowest top 10 km (marked ‘NL’ for ‘non-localized’). The under-
lying portion of the lithosphere deformed in a diffuse, pure shear
manner.

Finally, we found that while the viscoplastic simulation
(V10slow) with H = 10 km, U = 0.2 cm yr−1 and ηL = 1024 Pa s pro-
duced a long-lived fault, the same simulation with a 10-fold increase
in brittle layer viscosity (ηL = 1025 Pa s, simulation V10slow 25)
evolved in the multiple faults regime (Table 2, Fig. 6b). Increasing
the faulted layer viscosity by a factor of 10 therefore shifts the life
span regime transition towards extension rates that are ∼10 times
lower. This suggests that, like the topographic evolution (Section
3.2), the faulting regime for a given faulted layer thickness is deter-
mined by the product U × ηL. The transition is also less sensitive
to the faulted layer thickness than in the elastoplastic simulations.

3.5 Summary of numerical results

To summarize our numerical results, we find that in elastoplastic
layers fault topography, dip evolution and life span are essentially
insensitive to extension rate, and closely follow the predictions of
previous studies (Lavier et al. 2000; Behn & Ito 2008; Olive &

Behn 2014). By contrast, in simulations that treat the lithosphere
as a viscoplastic solid, the characteristic distance over which the
long wavelength fault-induced topography decays decreases over
time. The topography transitions out of a short initial phase where
the footwall and hanging wall blocks are offset like two seemingly
rigid blocks. Coincidentally, faults rotate to shallower angles faster
(per unit of horizontal extension) when the extension rate is lower.
Finally, the regime boundary between long-lived faulting and mul-
tiple faults depends strongly on the extension rate multiplied by the
faulted layer viscosity. In the following section, we use a simple
scaling approach to gain insight into the extension rate-dependence
of the viscoplastic simulations.

4 S E M I - A NA LY T I C A L S C A L I N G S
T O G U I D E T H E I N T E R P R E TAT I O N
O F N U M E R I C A L S I M U L AT I O N S

4.1 Fault-induced topography

In all our elastoplastic simulations topography grows in a rate-
independent manner, suggesting that topography is driven entirely
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Figure 6. Regime diagrams for the life span of normal faults in (a) elastoplastic and (b) viscoplastic lithosphere, as a function of faulted layer thickness H
and full extension rate U. The ‘prolonged-slip’ regime (∞) describes cases in which the initially seeded fault grows indefinitely; the ‘multiple faults’ (MF)
regime refers to cases where the initial fault is abandoned in favour of a new, spontaneously forming fault. The horizontal offset accommodated on the initial
fault when the next fault breaks is indicated in parentheses. NL refers to ‘non-localized’, a case where a shear band never cuts through the entire brittle layer
(Fig. 3g). The faulted layer viscosity is ηL = 1024 Pa s for all cases except the underlined case shown in the lower left with H = 10 km and U = 0.2 (label
is offset for clarity and arrow points to the correct position on the diagram) in which ηL = 1025 Pa s. The dashed black curve indicates a possible regime
boundary between the prolonged-slip and the MF regime. The purple curve marks a possible criterion for localizing strain on the seeded fault (see Section 4.3
for details).

by elastic flexure. The fault-induced, flexural topography wT (x) is
well explained by the thin plate solution of Weissel & Karner (1989)
and detailed by Olive & Behn (2014):

wT (x) = 1

4
αE tan θ

(
f

∣∣∣∣ x − h/2

αE

∣∣∣∣ − f

∣∣∣∣ x + h/2

αE

∣∣∣∣
)

(20)

with f defined as

f (x) = e−x (sin x − cos x) . (21)

The flexure predicted by the numerical models closely resembles
that predicted by eq. (20) (Figs 4a–d). To enable a quantitative
comparison between the two models, we estimated the value of αE

that allows eq. (20) to best fit the numerical results presented in
Figs 4(a)–(c), using a grid search approach. The elastic model best
fits the elastoplastic simulations with 10-km-thick faulted layers
with αE = 20 km across a wide range of extension rates and fault
heaves. This value is slightly lower than the value of 28 km, which
would be expected from eq. (18), if the numerical model were purely
elastic. The mismatch likely represents the effect of diffuse plastic
yielding (Fig. 2e) lowering the effective elastic thickness of the
faulted layer (Buck 1988).

Our numerical results indicate that in the viscoplastic simula-
tions the length scale of topographic decay decreases with time and
is therefore not always accommodated within the numerical domain
at the beginning of the simulations. In cases where viscous topo-
graphic decay occurs over a distance too broad for the domain size,
topography appears flat on both sides of the fault, and the footwall
and hanging wall effectively behave as two rigid blocks. We interpret
the flat topography as an artefact of (1) the free-slip side boundary
conditions allowing free uplift/subsidence along the sides of the box
and (2) the uniform (horizontal) velocities applied along the sides,
which may introduce moments that tend to flatten out the faulted
layer near the boundaries. However, a no-slip boundary condition is
not preferable, because pinning the edges of the layer often results
in spurious plastic yielding along the sides of the model domain.
In short, when the wavelength of topographic decay is longer than
the model domain the boundary conditions likely introduce sizeable
artefacts.

To understand the observed kinematics of the topographic decay
in the viscoplastic cases, we derive an analytical solution for fault
growth in a thin viscous plate. This is effectively a re-derivation of
the classic Weissel & Karner (1989) elastic thin plate model using
a viscous (Newtonian) rheology (Biot 1961; Turcotte & Schubert
2002). The solution is detailed in the Appendix. The key result is
that the topographic decay of a viscous plate is well described by
an elastic flexure model (eq. 20) with an effective ‘viscous flexural
wavelength’ αV that decreases with increasing fault heave, h (Fig. 7)
and depends on extension rate:

αV (h) =
(

ηLU H 3

�ρgh

) 1
4

. (22)

The analytical result of a decreasing αV with increasing h is in
agreement with the observation of topographic decay occurring on
progressively shorter length scales as extension proceeds (Figs 4e–
h), and on longer length scales in thicker faulted layers. The fact
that αV is a direct function of U × ηL is also consistent with the
interchangeable effects of U and ηL on topography noted at the end
of Section 3.2. To further test this model, we fit the topography
presented in Figs 4(e)–(h) with the functional form of eq. (20), and
estimate the flexural wavelength (here corresponding to an equiva-
lent viscous flexural wavelength) that enables the best fit. Viscoplas-
tic simulations with a 10-km-thick faulted layer initially produced
rigid block topography, regardless of the extension rate. This topog-
raphy, which is nearly flat on either side of the fault, can only be
fit by eq. (20) when using an infinite flexural wavelength (dashed
lines and diamonds in Fig. 7). However, as extension proceeds, the
faulted layer bends on a shorter and shorter wavelength. When the
extension rate is slow (U = 0.2 cm yr−1), it only takes ∼1 km of
horizontal offset on the fault for the topographic decay to become
resolvable within the numerical domain. With a faster extension
rate (20 cm yr−1), it takes about twice as much offset to resolve
the topographic decay. The general trends of the numerical model
results are captured by the analytical model represented by eq. (22),
which shows a faster decay of the viscous flexural wavelength for
smaller values of U × ηL (solid lines in Fig. 7). The analytical and
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(a)

(b)

Figure 7. Flexural wavelength determined from fitting the topography pro-
duced in viscoplastic simulations (ηL = 1024 Pa s, diamonds and dashed
lines) with an analytical solution (eq. 20) at various amounts of fault heave
for a numerical domain of width (a) 84 km, and (b) 252 km. Colored lines
show the analytical prediction of eq. (22), using ηL = 1024 Pa s (thick lines)
and 1023 Pa s (thin lines). The colour code corresponds to varying extension
rates. The faulted layer thickness is H = 10 km.

numerical models, however, are in poor quantitative agreement. This
is not surprising given the fact that the analytical model considers
a thin, infinitely long plate of perfectly uniform viscosity, whereas
the numerical model predicts diffuse plastic yielding, which de-
creases the effective viscosity in sizeable portions of the footwall
and hanging wall blocks, as seen in Fig. 2(f).

An important corollary to these results is that the width of the nu-
merical domain may strongly influence the behaviour of viscoplastic
simulations of rifting. As a demonstration, we re-ran two viscoplas-
tic simulations (and one elastoplastic simulation, for reference) in
a domain three times wider than the original width of 84 km (runs
ending in ‘LB’ in Table 2). The corresponding fault-induced to-
pographies are shown in Fig. 8. All these large box runs produced
a well-expressed decay of topography away from the fault scarp.
The topography produced in the elastoplastic run is unchanged by

(a)

(b)

(c)

Figure 8. Model topography obtained after ∼1 and ∼2 km of extension on
a fault cutting through a 10-km-thick faulted layer in a numerical domain
that is either 84 (red) or 252 (black) km-wide. (a) and (b): Viscoplastic layers
subjected to 20 and 0.2 cm yr−1 of extension, respectively. (c) Elastoplastic
layer subjected to 20 cm yr−1 of extension.

an increase in box size (Fig. 8c). This confirms that a box width of
L = 3αE is sufficient to accommodate elastoplastic bending within
the numerical domain. On the other hand, the differences between
the small and large boxes can be striking for viscoplastic runs.
When the extension rate is high, the viscoplastic lithosphere in the
small numerical domain initially behaves as rigid blocks (red profile
in Fig. 8a). However, this effect is suppressed if the box width is
increased (black profile in Fig. 8a).

Box width is less important if the extension rate is lower (Fig. 8b).
As described earlier, we estimate the evolving flexural wavelength of
these large box viscoplastic runs by fitting eq. (20) to the modelled
topography at various stages of fault evolution. The results are
plotted in Fig. 7(b). Again, we observe a faster decay of the flexural
wavelength with increasing fault heave when the extension rate is
lower. This decay is faster in the large box runs (Fig. 7b) than
in their small box counterparts (Fig. 7a). In the large box runs,
the measured viscous flexural wavelengths (20–60 km) are more
consistent with the analytical predictions over a wider range of
heaves (h > 2 km), provided one assumes a faulted layer viscosity
of 1023 Pa s in the analytical model instead of the value of 1024 Pa s
used in the numerical simulations. This discrepancy is likely due to
the effect of diffuse plastic yielding lowering the effective viscosity
of the faulted layer (Fig. 2f), just as it decreases the effective elastic
thickness in the elastoplastic simulations.

These simulations with varying box sizes demonstrate that using
a domain width that can accommodate at least ∼3 flexural wave-
lengths is essential to obtain realistic topographies in models of
tectonic extension. In viscoplastic layers, using a greater box width
enables the model to accommodate the full topographic decay ear-
lier starting at a smaller amount of heave, and to restrict the initial
rigid blocks phase to a minimum duration.
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4.2 Fault rotation

In all elastoplastic simulations, the initial fault (dipping ∼50◦) ro-
tates rapidly towards a shallower dip ≤40◦ (Fig. 5a). We interpret
this behaviour to result from the passive advection of the fault plane
in the displacement field induced by footwall and hanging wall
flexure, which simultaneously acts to minimize the total work done
by the system (Olive & Behn 2014). Olive et al. (2014) demon-
strated that with this mechanism, the fault rotation rate ∂θ /∂h scales
as the inverse of the flexural wavelength of the faulted layer. This
mechanism accounts for the faster rotation rates measured in both
the viscoplastic simulations conducted at slower extension rates
(Figs 5b and c) and in thinner brittle layers (Fig. 5d), because de-
creasing U, H or both parameters results in a decrease in the viscous
flexural wavelength (eq. 22).

In order to gain a more quantitative understanding of rotation
kinematics in a viscous faulted layer, we incorporate the heave-
dependent flexural wavelength derived in the Appendix into the
kinematic fault rotation model of Olive et al. (2014). We expect
the temporal rate of fault rotation to roughly scale with the average
rotation rate of the near-fault displacement field, 	̇:

∂θ

∂t
∼ −	̇. (23)

To first order, the main source of rotation is the lateral gradient of
vertical motion, which is maximal at the fault (equal to 0.5U tanθ ),
and becomes negligible a fraction (�) of the flexural wavelength α

away from the fault. The length scale �α can thus be thought of
as the lever arm involved in the rotation of the fault. We therefore
write

	̇ ≈ 1

2

∂vy

∂x
≈ 1

4

U tan θ

�α
. (24)

Substituting eq. (24) into eq. (23) with the constraint h = Ut yields

∂θ

∂h
= − tan θ

4�α
, (25)

which can be integrated to yield

θ = sin−1

[
sin θ0 exp

(
− 1

4�

∫ h

0

dh

α(h)

)]
. (26)

With these assumptions, we can predict the evolution of fault dip
as a function of heave for a given extension rate. In a purely elastic
lithosphere, the flexural wavelength is a constant given by eq. (18),
and eq. (26) simplifies to

θ = sin−1

[
sin θ0 exp

(
− h

4�αE

)]
. (27)

By contrast, for a purely viscous lithosphere, we substitute eq. (22)
into eq. (26) to yield

θ = sin−1

[
sin θ0 exp

(
− 1

5�

(
�ρg

ηLU H 3

) 1
4

h
5
4

)]
. (28)

Following the approach of Olive et al. (2014), we assume a scaling
factor � = 0.25, which was empirically found to accurately predict
fault rotation rates in elastoplastic simulations across a range of
faulted layer thicknesses. A value of 0.25 means that the lever arm
associated with fault rotation corresponds to about a fourth of the
effective flexural wavelength of the faulted layer (eq. 22).

Fig. 5 shows the comparison between our analytical prediction of
fault rotation and numerical results. The extension rate-independent
rotation observed in elastoplastic numerical simulations is well ex-
plained by our simple elastic model (Fig. 5a); it also indicates that

the diffuse plasticity outside of the fault zone does not significantly
influence fault rotation. The analytical model for fault rotation in
viscous layers captures the slower rotation with accumulated fault
heave in thicker layers (Fig. 5d).

Because the analytical rotation model suffers from the same lim-
itations as the analytical topographic model (no plasticity, con-
stant Newtonian viscosity, thin-plate approximation), the quantita-
tive agreement between the analytical rotation kinematics and the
numerical results is poor. Similar to the topography model (Fig. 7),
the agreement between numerical simulations and analytical pre-
dictions is improved if a viscosity lower than 1024 Pa s is used in the
analytical model (thin lines in Fig. 5). This is likely the signature of
diffuse plastic yielding in the numerical models not included in the
analytical models (Fig. 2f).

Finally, the difference in fault rotation rate resulting from a
change in extension rate is better pronounced in the simulations
carried out with a wider numerical domain (Fig. 5c). This suggests
that the finite width of the numerical domain is another major con-
tributor to the discrepancy between our analytical predictions and
numerical results.

4.3 Fault life span

The control of layer thickness H on fault life span in elastoplas-
tic layers is well explained by the accumulation of elastic (rate-
independent) stresses associated with lithospheric flexure and to-
pographic growth (Forsyth 1992; Buck 1993; Lavier et al. 2000;
Olive & Behn 2014; Olive et al. 2014). Specifically, Forsyth (1992)
and Buck (1993) showed that sustaining topographic growth and
bending the footwall and hanging wall blocks requires an increas-
ing amount of force as the fault accumulates more offset. Lavier et
al. (2000) established that the maximum force increase �F required
to bend an elastoplastic layer scales with layer thickness according
to:

�F = �H 2, (29)

where � is a constant dependent on the elastoplastic properties
of the layer (e.g. � increases with increasing shear or Young’s
modulus). They also estimated that the increase in force required
to break a new fault in intact lithosphere �FBREAK should roughly
scale with the strength contrast �σ y between a weak fault zone and
intact lithosphere integrated over the thickness of the faulted layer:

�FBREAK = �σy H. (30)

If the maximum force increase due to bending during fault growth
never exceeds �FBREAK, a fault can grow indefinitely without being
abandoned. The criterion for the prolonged slip regime is therefore

�F < �FBREAK. (31)

In an elastoplastic layer, this translates as a criterion on layer thick-
ness that does not depend on extension rate

H <
�σy

�
, (32)

thereby explaining why prolonged slip only occurs in layers thinner
than a critical value of H between 10 and 20 km in our numerical
simulations (Fig. 6a).

In a viscous layer, however, dimensional analysis shows that the
maximum force increase associated with footwall and hanging wall
deformation (i.e. the depth-integrated deviatoric stress) scales with
the faulted layer viscosity times strain rate. The average strain rate
in areas adjacent to the fault should scale with the extension rate
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normalized by the domain width, resulting in the following scaling
for �F:

�F ≈ ηLU H

L
. (33)

In this case, the criterion for prolonged slip on the initial fault (eq.
31) translates into a critical extension rate rather than a critical layer
thickness:

U <
�σy L

ηL
. (34)

This simple scaling is consistent with the regime boundary illus-
trated in Fig. 6(b). In our simulations, the critical extension rate is
between 0.2 and 2 cm yr−1 for ηL = 1024 Pa s across a range of
L = 84–190 km (Table 2). Since we set the domain width to three
times the equivalent elastic flexural wavelength of the faulted layer,
L increases with layer thickness as L ∼ H

3
4 (eq. 18). We therefore

expect the critical extension (eq. 34) rate to increase with increasing
H in a concave up manner. This prediction is consistent with the
fact that in run V20ref (H = 20 km, U = 2 cm yr−1) the second
fault formed after the initial fault accumulated a horizontal offset of
∼46 km, which is much greater than in any other fault observed in a
‘multiple fault’ regime simulation (Fig. 6b). For a layer thickness of
20 km, the transition between the two faulting regimes must there-
fore be very close to U = 2 cm yr−1. Further, if ηL is increased to
1025 Pa s, the critical rate drops below 0.2 cm yr−1 (run V10slow 25
in Table 2), which is consistent with eq. (34).

Finally, this simple scaling approach may explain why viscoplas-
tic simulation V30slow with a large box (L = 190 km) and the
slowest extension rate (U = 0.2 cm yr−1) did not result in full strain
localization onto the fault seed in the first place (Fig. 3g); the im-
posed strain rate was so low that the stresses never fully exceeded
the plastic failure point of the lithosphere. In order to drive strain lo-
calization on the entire fault seed, the force applied when imposing
extension on the edges of the domain must exceed the integrated
resistance of the layer, which scales as ∼μρgH2. From eq. (33),
we expect that the slowest extension rate at which localization can
occur (ULOC) should scale as

ULOC ∼ μρgH L

ηL
. (35)

This critical extension rate for localization should therefore in-
crease with increasing layer thickness as H

7
4 , that is, as a concave-

down function of H. This is illustrated as a purple dashed curve in
Fig. 6(b).

5 C O N C LU D I N G R E M A R K S

This study addresses the differences between numerical simula-
tions of tectonic extension in an elastoplastic and a viscoplastic
lithosphere. We focus on the long-term evolution of individual nor-
mal faults, which constitute the building blocks of extensional plate
boundaries. We show that elasticity promotes rift geometries (to-
pography and fault rotation) that depend only on the total amount
of extension and not on the rate of extension. Specifically, fault
life span, and therefore the style of extensional faulting (multiple
short-offset faults versus long-lived detachments) are unaffected by
extension rate in elastoplastic simulations, and instead are strongly
controlled by lithospheric thickness.

A viscoplastic rheology can often reproduce the qualitative be-
haviour of elastoplastic simulations, by displaying a pronounced
topographic decay away from the fault scarp, and predicting faults

to rotate rapidly after they localize. This behaviour is favoured when
the numerical domain is wide enough to accommodate ∼3 times the
effective flexural wavelength of the viscous layer, which decreases
over time as predicted by eq. (22). If the model domain is not wide
enough, the topography will initially mimic that of rigid blocks
offset by the fault with little internal deformation (e.g. Behn et al.
2002). Further, we find that the faulting regime (Fig. 6, Table 2) in
viscoplastic layers is primarily controlled by the product of layer
viscosity and extension rate, and is only weakly sensitive to faulted
layer thickness.

The elastoplastic prediction of rate-independent fault evolution
is most relevant to natural continental rift and mid-ocean ridge set-
tings, given that the characteristic topographic signature of elastic
flexure is observed near normal faults over a wide range of spread-
ing rates (e.g. King et al. 1988; Weissel & Karner 1989; Armijo
et al. 1996; Schouten et al. 2010). Further, the differences in rift
morphology across spreading rates are generally well explained by
rheological factors (i.e. lithospheric thickness) and external controls
such as magmatism (Buck et al. 2005; Behn & Ito 2008; Ito & Behn
2008) and surface processes (Olive et al. 2014).

Some authors have proposed that extension rate itself may exert
a rheological control on mid-ocean ridge morphology and the de-
velopment of transform faults (Gerya 2010b, 2013; Püthe & Gerya
2013). However, this suggestion is based upon numerical models
that do not include elasticity, and should therefore be examined in
light of our new results and scalings. The moderately low litho-
spheric viscosity (∼1022 Pa s) and relatively thin layer thickness
(∼10 km) used by Püthe & Gerya (2013) guarantees that the vis-
cous flexural wavelength of the lithosphere is rapidly accommo-
dated within the model domain (∼100 km). These simulations can
therefore produce topography that qualitatively resembles elastic
flexure, yet the results of our study raise questions as to what ex-
tent the prediction of a spreading rate-dependent ridge morphology
found by Püthe & Gerya (2013) results from the use of a viscoplastic
approximation to the natural rheology of oceanic plates.

In a broad sense, the analogies between elastoplastic and vis-
coplastic models result from mathematical similarities between lin-
ear elasticity (stress proportional to strain) and Newtonian viscosity
(stress proportional to strain rate). However, these similarities are
at risk of breaking down in a problem-dependent manner when
key parameters such as lithospheric thickness or velocity boundary
conditions are changed. Further, the incorporation of elasticity in
a numerical model can significantly affect the spatial and temporal
evolution of deviatoric stresses, which in turn control the forma-
tion of new faults. Elasticity is therefore critically important in
long-term geodynamic simulations that involve faults forming in a
sequence and significantly deforming the surrounding lithosphere.
Fortunately, viscoelastoplastic codes are becoming widely avail-
able to the long-term tectonics community—for example Cundall
(1989, FLAC); Gerya & Yuen (2003, 2007; Gerya 2010a, I2ELVIS
and I3ELVIS); Moresi et al. (2007, Underworld); Dabrowski et al.
(2008), Kaus (2010, MILAMIN VEP); Choi et al. (2008, SNAC;
2013, DynEarthSol2D); May et al. (2014, pTatin3D).

Lastly, we acknowledge that the cases investigated here are end
members in which the lithosphere is entirely elastic–brittle, or
viscous–brittle. Quantifying the behaviour of the more realistic,
intermediate case of a viscoelastoplastic layer (in which the hotter,
lower portion of the lithosphere fails by more or less distributed
viscous creep) is beyond the scope of this study. A first step towards
this goal would be to elucidate the fundamental mechanics of stress
coupling across the brittle–ductile transition, which remain poorly
understood (e.g. Nagel & Buck 2006).
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H.-B., 2007. Computational approaches to studying non-linear dynamics
of the crust and mantle, Phys. Earth planet. Inter., 163, 69–82.

Murrell, S.A.F., 1976. Rheology of the lithosphere—experimental indica-
tions, Tectonophysics, 36, 5–24.

Nagel, T.J. & Buck, W.R., 2006. Channel flow and the develop-
ment of parallel normal faults, J. geophys. Res., 111, B08407,
doi:10.1029/2005JB004000.

Olive, J.-A. & Behn, M.D., 2014. Rapid rotation of normal faults due to
flexural stresses: an explanation for the global distribution of normal
fault dips, J. geophys. Res., 119, doi:10.1002/2013JB010512.

 at M
B

L
W

H
O

IL
ibrary on M

ay 31, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


742 J.-A. Olive et al.

Olive, J.-A., Behn, M.D. & Malatesta, L.C., 2014. Modes of extensional
faulting controlled by surface processes, Geophys. Res. Lett., 41(19),
6725–6733.

Poliakov, A.N.B. & Buck, W.R., 1998. Mechanics of stretching elastic-
plastic-viscous layers: applications to slow-spreading mid-ocean ridges,
in Faulting and Magmatism at Mid-Ocean Ridges, Geophys. Monogr. Ser.,
Vol. 106, pp. 305–323, eds, Buck, W.R. et al., AGU.
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A P P E N D I X : FAU LT - I N D U C E D
T O P O G R A P H Y I N A V I S C O U S
L I T H O S P H E R E

The plate deflection resulting from slip on a fault is modelled by
adding the contribution of (a) rigid motion of the hanging wall and
footwall blocks along the fault and (b) viscous deformation of the
footwall and hanging wall blocks in response to gravity (Weissel
& Karner 1989). If w∗(x,t) denotes the topography resulting from
step (a) alone, the deflection w(x,t) corresponding to step (b) can
be calculated as the response to the load exerted by w∗(x,t). In a
viscous faulted layer, w(x,t) is the solution to the thin viscous plate
equation (Biot 1961; Turcotte & Schubert 2002)

F
∂4ẇ

∂x4
+ �ρgw = −�ρgw∗ (A1)

where F denotes the viscous equivalent to the elastic flexural rigidity
D (eq. 13)

F = 1

6
ηL H 3 (A2)

and w∗(x,t) is

w∗(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

−Ut
2 tan θ, ∀x ≤ −Ut

2

x tan θ, ∀x ∈ [−Ut
2 , Ut

2

]
Ut
2 tan θ, ∀x ≥ Ut

2

(A3)

In this notation, U denotes the full extension rate, t is the time since
the onset of faulting and x originates where the fault initially inter-
sects the surface (Table 1). The resulting, fault-induced topography
wT(x,t) is then obtained by adding increments of w∗(x,t) and w(x,t),
following

∂wT

∂t
= ∂w

∂t
+ ∂w∗

∂t
(A4)

In the following, we outline a semi-analytical method to solve (A1)–
(A4) using Laplace and Fourier transforms. The problem is reduced
to the calculation of an inverse Fourier transform, which can be
estimated numerically. We then propose an approximate solution
that captures the behaviour of the exact solution and is easier to
implement in simple scaling models.

For any function f(x,t) we write f̂ (k, t) its Fourier transform
defined as

f̂ (k, t) = 1√
2π

∫ +∞

−∞
f (x, t)eikx dx (A5)

and the inverse Fourier transform is defined by

f (x, t) = 1√
2π

∫ +∞

−∞
f̂ (k, t)e−ikx dk. (A6)

The Laplace transform f̃ (x, s) is defined as

f̃ (x, s) =
∫ +∞

0
f (x, t)e−st dt. (A7)

Taking the Laplace and Fourier transforms, successively, of eq. (A1)
yields

ˆ̃w = −�ρg

k4 Fs + �ρg
ˆ̃w

∗
. (A8)

In order to calculate the Laplace transform of w∗(x,t) (eq. A3),
we rewrite it as an explicit function of time:

w∗(x, t) =
{

sgn(x) Ut
2 tan θ, ∀t ≤ ∣∣U x

2

∣∣
x tan θ, ∀t ≥ ∣∣ 2x

U

∣∣ . (A9)

Piece-wise integration yields

w̃∗(x, s) = U

2s2
tan θ

(
1 − e

−
∣∣∣ 2xs

U

∣∣∣) × sgn

(
2xs

U

)
. (A10)

Finally, the Fourier transform of eq. (A10) is found to be

ˆ̃w
∗
(k, s) = Ui tan θ

k
√

2π
× 1(

s + i Uk
2

) (
s − i Uk

2

) . (A11)

Using eq. (A8), we can now write ˆ̃w
∗
(k, s)

ˆ̃w(k, s) = iU�ρg tan θ

k5 F
√

2π
× 1(

s + �ρg
k4 F

) (
s + i Uk

2

) (
s − i Uk

2

) . (A12)

We note that the s-dependence of eq. (A12) is a rational fraction that
we can expand into a sum of partial fractions. We can then identify
a sum of tabulated Laplace transforms, which are readily inverted
into time domain. By applying the inverse Fourier transform formula
(eq. A6), we can reduce the calculation of w(x,t) to the estimation
of an integral, which can be performed numerically:

w(x, t) = − iU�ρg tan θ

2π F
×

∫ +∞

−∞

1

k5

(
1

iUk
(

A(k) + iUk
2

) e
iUkt

2

− 1

iUk
(

A(k) − iUk
2

)e− iUkt
2 + B(k)

)
e−ikx dk (A13)

 at M
B

L
W

H
O

IL
ibrary on M

ay 31, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Elasticity in rifting models 743

(a) (b)

(c)

Figure A1. (a) Illustrative rms misfit between the exact solution to the viscous faulting problem [calculated from eq. (A13) through numerical integration]
and the approximate solution (eq. A20 using the viscous flexural wavelength αV from eq. A19 instead of αE) using various scaling factors ξ . This example
corresponds to a fault heave of 2.5 km in a 10-km-thick layer with a viscosity of 1024 Pa s extended at a full rate of 2 cm yr−1. (b) and (c): Topographies
predicted by the exact solution (red) and the approximate solution using ξ = 6 (blue) for a range of layer thicknesses H and extension rates U.

with

A(k) = �ρg

k4 F
(A14)

and

B(k) = 1(
A(k) + iUk

2

) (
A(k) − iUk

2

)e−A(k)t . (A15)

Eq. (A13), however, does not allow straightforward comparisons
between the topographies that develop in a viscous versus an elas-
tic faulted layer. To enable such comparisons, we seek to ex-
tract a characteristic length scale for topographic decay in vis-
cous plates that is analogous to the flexural wavelength of elastic
plates. To do so, we note that the use of the Laplace transform
makes the present derivation very similar to the case of an elastic
thin plate, which would be characterized by the following flexure
equation:

D
∂4w

∂x4
+ �ρgw = −�ρgw∗ (A16)

which can be expressed in Fourier domain:

ŵ = −�ρg

k4 D + �ρg
ŵ∗. (A17)

Eq. (A17) has the same form as eq. (A8) provided D is replaced
by Fs. This suggests that the elastic solution with a time-dependent
flexural rigidity is a good approximation for the viscous problem.
From dimensional analysis, we propose an equivalent viscous rigid-
ity of the form

DV (t) = F

t
= ηL H 3

6t
. (A18)

By analogy, we define a time-dependent viscous bending wave-
length as

αV =
(

ζ F

�ρgt

) 1
4

, (A19)

where ζ is a scaling factor. We next recall the elastic solution to
eq. (A17) outlined in Olive & Behn (2014):

wT (x) = 1

4
αE tan θ

(
f

∣∣∣∣ x − h/2

αE

∣∣∣∣ − f

∣∣∣∣ x + h/2

αE

∣∣∣∣
)

(A20)

with f defined as

f (x) = e−x (sin x − cos x) . (A21)

We compare our exact solution (eq. A13) to the elastic solution using
the time-dependent wavelength αV defined in eq. (A19) instead of
the elastic wavelength αE. We find that eq. (A20) provides the
best approximation for the exact solution when αV is calculated
with a scaling factor ζ ≈ 6 (Fig. A1). We therefore propose the
following definition for the viscous bending wavelength, which is
used throughout the main text:

αV =
(

ηL H 3

�ρgt

) 1
4

. (A22)

Finally, because fault heave (h) is more useful than time to describe
experiments carried out at different extension rates, we rewrite
(A22) as

αV =
(

ηLU H 3

�ρgh

) 1
4

. (A23)
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