28 research outputs found
Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis
ABSTRACT: Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits
Recommended from our members
Steady state free radical budgets and ozone photochemistry during TOPSE
A steady state model, constrained by a number of measured quantities, was used to derive peroxy radical levels for the conditions of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. The analysis is made using data collected aboard the NCAR/NSF C-130 aircraft from February through May 2000 at latitudes from 40° to 85°N, and at altitudes from the surface to 7.6 km. HO2 + RO2 radical concentrations were measured during the experiment, which are compared with model results over the domain of the study showing good agreement on the average. Average measurement/model ratios are 1.04 (σ = 0.73) and 0.96 (σ = 0.52) for the MLB and HLB, respectively. Budgets of total peroxy radical levels as well as of individual free radical members were constructed, which reveal interesting differences compared to studies at lower latitudes. The midlatitude part of the study region is a significant net source of ozone, while the high latitudes constitute a small net sink leading to the hypothesis that transport from the middle latitudes can explain the observed increase in ozone in the high latitudes. Radical reservoir species concentrations are modeled and compared with the observations. For most conditions, the model does a good job of reproducing the formaldehyde observations, but the peroxide observations are significantly less than steady state for this study. Photostationary state (PSS) derived total peroxy radical levels and NO/NO2ratios are compared with the measurements and the model; PSS-derived results are higher than observations or the steady state model at low NO concentrations
Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation
The performance of ozonation in wastewater depends on water quality and the ability to form hydroxyl radicals ( OH) to meet disinfection or contaminant transformation objectives. Since there are no on-line methods to assess ozone and OH exposure in wastewater, many agencies are now embracing indicator frameworks and surrogate monitoring for regulatory compliance. Two of the most promising surrogate parameters for ozone-based treatment of secondary and tertiary wastewater effluents are differential UV254 absorbance (ΔUV254) and total fluorescence (ΔTF). In the current study, empirical correlations for ΔUV254 and ΔTF were developed for the oxidation of 18 trace organic contaminants (TOrCs), including 1,4-dioxane, atenolol, atrazine, bisphenol A, carbamazepine, diclofenac, gemfibrozil, ibuprofen, meprobamate, naproxen, N,N-diethyl-meta-toluamide (DEET), para-chlorobenzoic acid (pCBA), phenytoin, primidone, sulfamethoxazole, triclosan, trimethoprim, and tris-(2-chloroethyl)-phosphate (TCEP) (R2 = 0.50–0.83) and the inactivation of three microbial surrogates, including Escherichia coli, MS2, and Bacillus subtilis spores (R2 = 0.46–0.78). Nine wastewaters were tested in laboratory systems, and eight wastewaters were evaluated at pilot- and full-scale. A predictive model for OH exposure based on ΔUV254 or ΔTF was also proposed
The changing landscape of genetic testing and its impact on clinical and laboratory services and research in Europe
The arrival of new genetic technologies that allow efficient examination of the whole human genome (microarray, next-generation sequencing) will impact upon both laboratories (cytogenetic and molecular genetics in the first instance) and clinical/medical genetic services. The interpretation of analytical results in terms of their clinical relevance and the predicted health status poses a challenge to both laboratory and clinical geneticists, due to the wealth and complexity of the information obtained. There is a need to discuss how to best restructure the genetic services logistically and to determine the clinical utility of genetic testing so that patients can receive appropriate advice and genetic testing. To weigh up the questions and challenges of the new genetic technologies, the European Society of Human Genetics (ESHG) held a series of workshops on 10 June 2010 in Gothenburg. This was part of an ESHG satellite symposium on the 'Changing landscape of genetic testing', co-organized by the ESHG Genetic Services Quality and Public and Professional Policy Committees. The audience consisted of a mix of geneticists, ethicists, social scientists and lawyers. In this paper, we summarize the discussions during the workshops and present some of the identified ways forward to improve and adapt the genetic services so that patients receive accurate and relevant information. This paper covers ethics, clinical utility, primary care, genetic services and the blurring boundaries between healthcare and research
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products
Abstract Reports of endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) have raised substantial concern among important potable drinking water and reclaimed wastewater quality issues. Our study investigates the removal of EDC/PPCPs of 52 compounds having different physico-chemical properties (e.g., size, hydrophobicity, and polarity) by nanofiltration (NF) and ultrafiltration (UF) membranes using a dead-end stirred-cell filtration system. EDC/PPCPs were applied to the membrane in one model water and three natural waters. Experiments were performed at environmentally relevant initial EDC/PPCP concentrations ranging typically from 2 to <250 ng/L. EDC/PPCP retention was quantified by liquid and gas chromatography with mass spectroscopy-mass spectroscopy. A general separation trend due to hydrophobic adsorption as a function of octanol-water partition coefficient was observed between the hydrophobic compounds and porous hydrophobic membrane during the membrane filtration in unequilibrium conditions. The results showed that the NF membrane retained many EDC/PPCPs due to both hydrophobic adsorption and size exclusion, while the UF membrane retained typically hydrophobic EDC/PPCPs due mainly to hydrophobic adsorption. However, the transport phenomenon associated with adsorption may depend on water chemistry conditions and membrane material
Intracellular Organic Matter from Cyanobacteria as a Precursor for Carbonaceous and Nitrogenous Disinfection Byproducts
The
formation of total organic halogen (TOX), carbonaceous disinfection
byproducts (DBPs) (trihalomethanes (THMs) and haloacetic acids (HAAs)),
and nitrogenous DBPs (trichloronitromethane (TCNM) or chloropicrin,
haloacetonitriles (HANs), and nitrosamines) was examined during the
chlorination or chloramination of intracellular organic matter (IOM)
extracted from <i>Microcystis aeruginosa</i>, <i>Oscillatoria </i>sp. (OSC), and <i>Lyngbya </i>sp. (LYN). The percentage
of unknown TOX (22–38%) during chlorination indicated that
the majority of DBPs were identified among THMs, HAAs, TCNM, and HANs.
Bromide was readily incorporated into DBPs with speciation shifting
slightly from dihalogenated species to trihalogenated species. During
formation potential testing with chloramines, nitrosamine yields from
IOM were measured for <i>N</i>-nitrosodimethylamine (NDMA,
10–52 ng/mg<sub>C</sub>), <i>N</i>-nitrosopyrrolidine
(NPYR, 14 ng/mg<sub>C</sub>), <i>N</i>-nitrosopiperidine
(NPIP, 3.7–5.5 ng/mg<sub>C</sub>), and <i>N</i>-nitrosomethylethylamine
(NMEA, 2.1–2.6 ng/mg<sub>C</sub>). When IOM was added to a
natural water matrix, the nitrosamine yields were not realized likely
due to competition from natural organic matter. Ozonation increased
NDMA and NMEA formation and reduced NPYR and NPIP formation during
subsequent chloramination. In addition, ozone oxidation of IOM formed
detectable concentrations of aldehydes, which may contribute to DBP
formation. Finally, bioluminescence-based test results showed that
>99% of the IOM extracted from OSC and LYN was biodegradable. Therefore,
a biological treatment process could minimize this source of DBP precursor
material during drinking water treatment
Impact of Hydrogen Peroxide and Copper Sulfate on the Delayed Release of Microcystin
Algicides, like hydrogen peroxide and copper sulfate, are commonly applied to recreational waters and drinking water sources to mitigate cyanobacterial blooms. In this work, the effects of hydrogen peroxide and copper sulfate were evaluated in two natural bloom samples (collected from Canadian and American waterbodies) and one lab-cultured Microcystis aeruginosa suspended in Colorado River water. Five algicide to dissolved organic carbon (DOC) dose ratios were evaluated during an initial exposure period of 24 h. One dose ratio (0.4 H2O2:DOC or 0.25 CuSO4:DOC) was then evaluated during stagnation after quenching (hydrogen peroxide) or extended exposure (copper sulfate) for up to 96 or 168 h. During the initial hydrogen peroxide exposure, the CA bloom had no release of intracellular microcystins (MCs) and the USA bloom only released MC at 4 H2O2:DOC. The reverse occurred with copper sulfate, where the CA bloom released MCs at 0.6 CuSO4:DOC but the USA bloom had no detectable extracellular MCs. Extracellular MC was released from the lab-cultured Microcystis at the lowest hydrogen peroxide and copper sulfate doses. In the hydrogen peroxide stagnation experiment, intracellular MC decreased in the USA bloom after 168 h despite the low dose applied. Similarly, the extended copper sulfate exposure led to intracellular MC decreases in both bloom samples after 168 h, despite showing no impact during the initial 24 h monitoring period. The lab-cultured Microcystis was again less resistant to both algicides, with releases observed after less than 2 h of stagnation or exposure. The damage to cells as measured by pigments during these experiments did not match the MC data, indicating that blooms with depressed pigment levels can still be a risk to nearby drinking water sources or recreational activities. These results provide insight on the timeline (up to one week) required for monitoring the potential release of MCs after algicide application