257 research outputs found

    DIVERSITY OF MICROFUNGI ON FAGACEAE IN ULUDAG FORESTS

    Get PDF
    WOS: 000363091600042Forests ecosystems are sources of oxygen and wood products, also they prevent soil erosion, improve water and air quality, serve as homes for wildlife; and therefore, they preserve and increase biodiversity. Forests can host a diverse community of fungal species with various effects on their host trees. In this research, trees of Fagaceae family of Uludag forests of Bursa province were investigated between the years of 2002 and 2008. By microscopic examination we identified 38 microfungi species in 27 genera belongs to Ascomycota and 1 microfungus species in 1 genus belongs to Basidiomycota. The taxa belong to 15 families: Botryosphaeriaceae, Diaporthaceae, Diatrypaceae, Dothioraceae, Erysiphaceae, Gnomoniaceae, Incertae sedis, Melanconidaceae, Microstromataceae, Nectriaceae, Pseudovalsaceae, Rhytismataceae, Trichosphaeriaceae, Valsaceae and Xylariaceae. The distribution of species by trophic groups revealed a dominance of xylotrophic species. With this study, fungal diversity of Fagaceae family in Uludag forests was identified and included in the mycobiota of Turkey

    Chromium(VI) Biosorption and Bioaccumulation by Live and Acid-Modified Biomass of a Novel Morganella morganii Isolate

    Get PDF
    Conventional methods of chromium removal are often insufficient for the remediation of chromium-contaminated natural environments, necessitating the development of alternative strategies. In this paper, we report the isolation of a novel Morganella morganii strain capable of reducing hexavalent chromium to its less-toxic and less-soluble trivalent form. Cr(VI) reduction by this strain was evaluated in both acidic environments and conditions reflecting natural freshwater sources. The isolate achieved equilibrium within 3 h and displayed a specific uptake rate of 24.30 ± 1.67 mg Cr(VI)/g biomass following HCl treatment. Without acid treatment, a reduction of over 90% was recorded within 72 h for an initial Cr(VI) concentration 20 mg/L, corresponding to a Cr(VI) removal capacity of 19.36 ± 1.89 mg/g. Absorption data of acid-treated STB5 biomass most closely followed the Toth and Langmuir models. FTIR results indicate that hydroxyl groups and extracellular or cell membrane polysaccharides may be potential adsorption sites for hexavalent chromium. Our results suggest that the isolate may be used in situ for treatment of polluted freshwater environments. Copyright © Taylor & Francis Group, LLC

    Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    Get PDF
    Cataloged from PDF version of article.Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism

    Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain

    Get PDF
    Objective: Diabetes is an independent risk factor for stroke. However, the underlying mechanism of how diabetes confers that this risk is not fully understood. We hypothesize that secretion of neurotrophic factors by the cerebral endothelium, such as brain-derived neurotrophic factor (BDNF), is suppressed in diabetes. Consequently, such accrued neuroprotective deficits make neurons more vulnerable to injury. Research Design and Methods: We examined BDNF protein levels in a streptozotocin-induced rat model of diabetes by Western blotting and immunohistochemistry. Levels of total and secreted BDNF protein were quantified in human brain microvascular endothelial cells after exposure to advanced glycation end product (AGE)-BSA by enzyme-linked immunosorbent assay and immunocytochemistry. In media transfer experiments, the neuroprotective efficacy of conditioned media from normal healthy endothelial cells was compared with AGE-treated endothelial cells in an in vitro hypoxic injury model. Results: Cerebrovascular BDNF protein was reduced in the cortical endothelium in 6-month diabetic rats. Immunohistochemical analysis of 6-week diabetic brain sections showed that the reduction of BDNF occurs early after induction of diabetes. Treatment of brain microvascular endothelial cells with AGE caused a similar reduction in BDNF protein and secretion in an extracellular signal–related kinase-dependent manner. In media transfer experiments, conditioned media from AGE-treated endothelial cells were less neuroprotective against hypoxic injury because of a decrease in secreted BDNF. Conclusions: Taken together, our findings suggest that a progressive depletion of microvascular neuroprotection in diabetes elevates the risk of neuronal injury for a variety of central nervous system diseases, including stroke and neurodegeneration

    A resampling-based meta-analysis for detection of differential gene expression in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accuracy in the diagnosis of breast cancer and classification of cancer subtypes has improved over the years with the development of well-established immunohistopathological criteria. More recently, diagnostic gene-sets at the mRNA expression level have been tested as better predictors of disease state. However, breast cancer is heterogeneous in nature; thus extraction of differentially expressed gene-sets that stably distinguish normal tissue from various pathologies poses challenges. Meta-analysis of high-throughput expression data using a collection of statistical methodologies leads to the identification of robust tumor gene expression signatures.</p> <p>Methods</p> <p>A resampling-based meta-analysis strategy, which involves the use of resampling and application of distribution statistics in combination to assess the degree of significance in differential expression between sample classes, was developed. Two independent microarray datasets that contain normal breast, invasive ductal carcinoma (IDC), and invasive lobular carcinoma (ILC) samples were used for the meta-analysis. Expression of the genes, selected from the gene list for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes were tested on 10 independent primary IDC samples and matched non-tumor controls by real-time qRT-PCR. Other existing breast cancer microarray datasets were used in support of the resampling-based meta-analysis.</p> <p>Results</p> <p>The two independent microarray studies were found to be comparable, although differing in their experimental methodologies (Pearson correlation coefficient, R = 0.9389 and R = 0.8465 for ductal and lobular samples, respectively). The resampling-based meta-analysis has led to the identification of a highly stable set of genes for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes. The expression results of the selected genes obtained through real-time qRT-PCR supported the meta-analysis results.</p> <p>Conclusion</p> <p>The proposed meta-analysis approach has the ability to detect a set of differentially expressed genes with the least amount of within-group variability, thus providing highly stable gene lists for class prediction. Increased statistical power and stringent filtering criteria used in the present study also make identification of novel candidate genes possible and may provide further insight to improve our understanding of breast cancer development.</p

    The Alvarado score for predicting acute appendicitis: a systematic review

    Get PDF
    Background: The Alvarado score can be used to stratify patients with symptoms of suspected appendicitis; the validity of the score in certain patient groups and at different cut points is still unclear. The aim of this study was to assess the discrimination (diagnostic accuracy) and calibration performance of the Alvarado score. Methods: A systematic search of validation studies in Medline, Embase, DARE and The Cochrane library was performed up to April 2011. We assessed the diagnostic accuracy of the score at the two cut-off points: score of 5 (1 to 4 vs. 5 to 10) and score of 7 (1 to 6 vs. 7 to 10). Calibration was analysed across low (1 to 4), intermediate (5 to 6) and high (7 to 10) risk strata. The analysis focused on three sub-groups: men, women and children. Results: Forty-two studies were included in the review. In terms of diagnostic accuracy, the cut-point of 5 was good at 'ruling out' admission for appendicitis (sensitivity 99% overall, 96% men, 99% woman, 99% children). At the cut-point of 7, recommended for 'ruling in' appendicitis and progression to surgery, the score performed poorly in each subgroup (specificity overall 81%, men 57%, woman 73%, children 76%). The Alvarado score is well calibrated in men across all risk strata (low RR 1.06, 95% CI 0.87 to 1.28; intermediate 1.09, 0.86 to 1.37 and high 1.02, 0.97 to 1.08). The score over-predicts the probability of appendicitis in children in the intermediate and high risk groups and in women across all risk strata. Conclusions: The Alvarado score is a useful diagnostic 'rule out' score at a cut point of 5 for all patient groups. The score is well calibrated in men, inconsistent in children and over-predicts the probability of appendicitis in women across all strata of risk

    Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    Get PDF
    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death

    Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from Southern Italy

    Get PDF
    Native grapevines are the quintessential ele- ments of Southern Italy winemaking, and genomic char- acterization plays a role of primary importance for preservation and sustainable use of these unexploited genetic resources. Among the various molecular techniques available, SSR and retrotransposons-based markers result to be the most valuable for cultivars and biotypes distinc- tiveness. A total of 62 accessions including 38 local grape cultivars were analyzed with 30 SSR, four REMAP and one IRAP markers to assess their genetic diversity and obtain a complete genomic profiling. The use of VrZAG79, VrZAG112, VVS2, VVMD25 and VVMD5 combined with retrotransposon-based markers proved to be the most dis- criminating and polymorphic markers for the rapid and unambiguous identification of minority grapevines from Campania region, which is considered one of the most appreciated Italian districts for wine production. Results revealed 58 SSR marker-specific alleles, 22 genotype- specific SSR alleles, and four REMAP and IRAP private bands. Cases of synonymy and homonymy were discov- ered. In conclusion, we provided evidences that the inte- grating SSR and retrotransposon-based markers is an effective strategy to assess the genetic diversity of autochthonous grapes, allowing their easy identification
    corecore