8 research outputs found

    Nearshore euxinia in the photic zone of an ancient sea:Part II – The bigger picture and implications for understanding ocean anoxia

    Get PDF
    Biomarker, palaeontological and isotopic evidence suggests that the Late Permian carbonate seas, i.e. the Northern (NPB) and Southern (SPB) Permian basins of northern Pangea, were characterized by significant spatial and temporal variations in the palaeowater-column redox state. This is particularly the case with regard to the deposition of the Lopingian Zechstein cycle 2 carbonate rocks. A shelf to basin reconstruction of environmental conditions was achieved by analysing nearly 400 core samples from 49 wells. This allowed an evaluation of the spatial variations in facies and broad oceanographic conditions at the basin scale. Specifically, in the lower slope and shallow-basin facies of the northern margin of the SPB (present-day northern Poland and eastern Germany), highly variable concentrations of the green sulphur bacterial biomarkers chlorobactane and isorenieratane (and their likely degradation products, C15 to C31 2,3,6-aryl isoprenoids, indicative of photic zone euxinia) and homohopane indices (indicative of anoxia), combined with the presence of a benthic fauna and bioturbation, indicate a variable but occasionally anoxic/euxinic water column. Locally in lagoonal facies in the northern and southern margin of the SPB, euxinic conditions also developed but these were likely associated with localised conditions or benthic production in association with microbialites. The presence of gammacerane in the eastern SPB (south-eastern Germany and eastern Poland) suggests elevated salinities there, compatible with the restricted configuration of the basin. However, a lack of these signatures in basinal settings of the eastern SPB indicates that strongly reducing conditions were restricted to the lower slope and shallow-basin locations and restricted lagoons, and were not developed in the basin centre. Moreover, this anoxia/euxinia in marginal settings is restricted to the north-eastern part of the SPB. The south-eastern part of the SPB (SE Poland), in contrast, is devoid of evidence for PZE. The southern margin of the SPB is also characterized by generally oxic-suboxic conditions, with local anoxia limited to more restricted embayments, and elevated salinities limited to restricted oxic-anoxic lagoons. In the western SPB (NE England and adjacent offshore) and the NPB (Outer Moray Firth, offshore Scotland) the water columns were oxic-suboxic. Overall, it appears that high but episodic primary bioproductivity of organic matter was concentrated on (or even limited to) the lower slopes of the SPB's north-eastern margin and the restricted lagoons and shallow basin of its southern margin, leading to the formation of source rocks for petroleum in these areas. In addition, the temporal and geographical restriction of anoxia appears to have prevented the accumulation of large and more widespread quantities of organic matter; in fact TOC contents exhibit a poor correlation with ecological and anoxia indicators. Crucially, this work confirms that the strong evidence for PZE observed in shelf and lower slope/shallow-basin facies of the north-eastern SPB need not be associated with widespread, basin-scale anoxia; this conclusion has implications for organic matter burial, carbon cycling and biotic crises during other times in Earth history

    Molecular and petrographical evidence for lacustrine environmental and biotic change in the palaeo-Sichuan mega-lake (China) during the Toarcian Oceanic Anoxic Event

    Get PDF
    The organic-rich upper Lower Jurassic Da'anzhai Member (Ziliujing Formation) of the Sichuan Basin, China is the first stratigraphically well-constrained lacustrine succession associated with the Toarcian Oceanic Anoxic Event (T-OAE; c. 183 Ma). The expansion of the palaeo-Sichuan mega-lake, probably one of the most extensive freshwater systems to have existed on the planet, is marked by large-scale lacustrine organic productivity and carbon burial during the T-OAE, possibly owing to intensified hydrological cycling and nutrient supply. New molecular biomarker and organic petrographical analyses, combined with bulk organic and inorganic geochemical and palynological data, are presented here, providing insight into aquatic productivity, land-plant biodiversity and terrestrial ecosystem evolution in continental interiors during the T-OAE. We show that lacustrine algal growth during the T-OAE accounted for a significant organic-matter flux to the lakebed in the palaeo-Sichuan mega-lake. Lacustrine water-column stratification during the T-OAE facilitated the formation of dysoxic–anoxic conditions at the lake bottom, favouring organic-matter preservation and carbon sequestration into organic-rich black shales in the Sichuan Basin. We attribute the palaeo-Sichuan mega-lake expansion to enhanced hydrological cycling in a more vigorous monsoonal climate in the hinterland during the T-OAE greenhouse

    Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Get PDF
    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition

    Geochemical data from the Cenomanian-Turonian interval of ODP Hole183-1138A

    No full text
    Geochemical data from Ocean Drilling Program Site 1138A, core 69, spanning the Cenomanian–Turonian boundary interval (~94 Ma). The data were generated from marine sediment in the archive half of the core, which was opened and sampled for this project following approval from the IODP curatorial advisory board. The data consist of: (i) Bulk organic geochemistry (total organic carbon, hydrogen and oxygen indexes, total inorganic carbon) measured by Rock Eval pyrolysis and coulormat titration; (ii) Bulk organic carbon isotopes, measured on decarbonated sediments; (iii) Bulk sediment elemental concentrations measured by ICP-MS; (iv) Bulk sediment molybdenum isotopes, measured by MC-ICP-MS; (v) n-alkane compound-specific carbon isotopes measured by GCMS-IRMS; (vi) Maceral assemblage compositions, measured by visual petrography

    Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event

    Get PDF
    The Early Jurassic Toarcian oceanic anoxic event (~183 Ma) was marked by marine anoxia–euxinia and globally significant organic-matter burial, accompanied by a major global carbon-cycle perturbation probably linked to Karoo–Ferrar volcanism. Although the Toarcian oceanic anoxic event is well studied in the marine realm, accompanying climatic and environmental change on the continents is poorly understood. Here, utilizing radioisotopic, palynological and geochemical data from lacustrine black shales, we demonstrate that a large lake system developed contemporaneously with the Toarcian oceanic anoxic event in the Sichuan Basin, China, probably due to enhanced hydrological cycling under elevated atmospheric pCO 2. We attribute increased lacustrine organic productivity to elevated fluvial nutrient supply, which resulted in the burial of ~460 Gt of organic carbon in the Sichuan Basin alone, creating an important negative feedback in the global exogenic carbon cycle. We suggest that enhanced nutrient delivery to marine and large lacustrine systems was a key component in the global carbon cycle recovery during the Toarcian oceanic anoxic event and acted to shorten the duration of the recovery of global δ13C values
    corecore