82 research outputs found

    Induction of annexin-1 during TRAIL-induced apoptosis in thyroid carcinoma cells

    Get PDF
    We investigated the expression of annexin-1 (ANXA1) in thyroid carcinoma cell lines and in thyroid cancers with a different degree of differentiation. The highest level of ANXA1 expression examined by Western blotting was detected in the papillary carcinoma cells (NPA) and in the follicular cells (WRO). On the other hand, the most undifferentiated thyroid carcinoma cells (ARO and FRO) presented the lowest level of ANXA1 expression. In surgical tissue specimens from 32 patients with thyroid cancers, we found high immunoreactivity for ANXA1 in papillary (PTC) and follicular (FTC) thyroid cancers while in undifferentiated thyroid cancers (UTC) the expression of the protein was barely detectable. Control thyroid tissue resulted positive for ANXA1. In summary, 70% of UTC examined weakly expressed ANXA1, whereas 65% of PTC or FTC specimens tested showed high expression of the protein. Thus ANXA1 expression may correlate with the tumorigenesis suggesting that the protein may represent an effective differentiation marker in thyroid cancer

    Augmented Reality to Guide Selective Clamping and Tumor Dissection During Robot-assisted Partial Nephrectomy: A Preliminary Experience.

    Get PDF
    ABSTRACT Introduction to explore the feasibility of augmented reality (AR) to guide arterial clamping during robot-assisted partial nephrectomy (RAPN). Patients and Methods 15 consecutive patients with T1 renal mass underwent RAPN guided by AR. The 3D virtual model derived by computed tomography was superimposed on the actual view provided by the Da Vinci video stream thought AR technology. Preoperative plan of arterial clamping based on 2D conventional imaging, on 3D model and the effective intraoperative surgical approach guided by AR were compared using the McNeamar test. Results The plan of arterial clamping based on 2D preoperative imaging was recorded as follows: no clamping in 3 (20%), clamping of the main artery in 10 (66.7%) and selective clamping in 1 (6.7%) and super-selective clamping in 1 (6.7%) cases. After revision of the 3D model, the plan of clamping was modified as follows: no clamping in 1 (6.7%), clamping of the main artery in 2 (13.3%), selective clamping in 8 (53.3%) and super-selective clamping in 4 (26.7%) cases (p=0.03). The effective intraoperative clamping approach guided by AR-guidance was performed as planned in 13 (86.7%) patients. Conclusion AR for 3D guided renal surgery is useful to increase the adoption of selective clamping during RAPN

    A multicenter epidemiological study on second malignancy in non-syndromic pheochromocytoma/paraganglioma patients in Italy

    Get PDF
    SIMPLE SUMMARY: As no previous studies had assessed the risk of second malignant tumors in patients with pheochromocytomas/paragangliomas (PPGLs), we aimed to evaluate whether these patients could have an increased risk of additional malignancy, comparing them with patients in the general population who had a first malignancy and developed a second malignant tumor. We demonstrated that PPGL patients had higher incidence of additional malignant tumors and the risk of developing a second malignant tumor increased with age at diagnosis. As the main tumors were prostate, colorectal and lung/bronchial cancers in males, and breast cancer, differentiated thyroid cancer and melanoma in females, our findings could have an impact on the surveillance strategy. ABSTRACT: No studies have carried out an extensive analysis of the possible association between non-syndromic pheochromocytomas and paragangliomas (PPGLs) and other malignancies. To assess >the risk of additional malignancy in PPGL, we retrospectively evaluated 741 patients with PPGLs followed-up in twelve referral centers in Italy. Incidence of second malignant tumors was compared between this cohort and Italian patients with two subsequent malignancies. Among our patients, 95 (12.8%) developed a second malignant tumor, which were mainly prostate, colorectal and lung/bronchial cancers in males, breast cancer, differentiated thyroid cancer and melanoma in females. The standardized incidence ratio was 9.59 (95% CI 5.46–15.71) in males and 13.21 (95% CI 7.52–21.63) in females. At multivariable analysis, the risk of developing a second malignant tumor increased with age at diagnosis (HR 2.50, 95% CI 1.15–5.44, p = 0.021 for 50–59 vs. 60- vs. <50-year). In patients with available genetic evaluation, a positive genetic test was inversely associated with the risk of developing a second tumor (HR 0.25, 95% CI 0.10–0.63, p = 0.003). In conclusion, PPGLs patients have higher incidence of additional malignant tumors compared to the general population who had a first malignancy, which could have an impact on the surveillance strategy

    TOI-1235 b: A Keystone Super-Earth For Testing Radius Valley Emergence Models Around Early M Dwarfs

    Get PDF
    Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period–radius space. Here we present the confirmation of TOI-1235 b (P = 3.44 days, rp=1.738−0.076+0.087{r}_{{\rm{p}}}={1.738}_{-0.076}^{+0.087} R⊕{R}_{\oplus }), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R s = 0.630 ± 0.015 R⊙{R}_{\odot }, M s = 0.640 ± 0.016 M⊙{M}_{\odot }). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of 6.91−0.85+0.75{6.91}_{-0.85}^{+0.75} M⊕{M}_{\oplus }, which implies an iron core mass fraction of 20−12+15{20}_{-12}^{+15}% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be \u3c0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8−0.8+0.9P={21.8}_{-0.8}^{+0.9} days, mpsin⁥i=13.0−5.3+3.8{m}_{{\rm{p}}}\sin i={13.0}_{-5.3}^{+3.8} M⊕{M}_{\oplus }) that cannot be firmly ruled out by our data

    Toi-1235 b: A keystone super-earth for testing radius valley emergence models around early m dwarfs

    Get PDF
    Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally-driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/non-rocky transition in period-radius space. Here we present the confirmation of TOI-1235 b (P=3.44P=3.44 days, rp=1.738−0.076+0.087r_p=1.738^{+0.087}_{-0.076} R⊕_{\oplus}), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/non-rocky transition around early M dwarfs (Rs=0.630±0.015R_s=0.630\pm 0.015 R⊙_{\odot}, Ms=0.640±0.016M_s=0.640\pm 0.016 M⊙_{\odot}). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial-velocities from HARPS-N and HIRES. We measure a planet mass of 6.91−0.85+0.756.91^{+0.75}_{-0.85} M⊕_{\oplus} which implies an iron core mass fraction of 20−12+1520^{+15}_{-12}% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like and we constrain a H/He envelope mass fraction to be <0.5<0.5% at 90% confidence. Our results are consistent with model predictions from thermally-driven atmospheric mass loss but not with gas-poor formation, which suggests that the former class of processes remain efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically-determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8−0.8+0.9P=21.8^{+0.9}_{-0.8} days, mpsin⁥i=13.0−5.3+3.8m_p\sin{i}=13.0^{+3.8}_{-5.3} M⊕_{\oplus}) that cannot be firmly ruled out by our data

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters, with sizes above 10 Earth radii (Re), or apparently rocky planets smaller than 2 Re. Such lack of planets of intermediate size (the "hot Neptune desert") has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 Re and a mass of 29 Me, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star \starname\, every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(-2.9)% of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this "ultra-hot Neptune" managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (Vmag=9.8)

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet1,2. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite3 revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0−2.9+2.7% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (Vmag = 9.8)
    • 

    corecore