22 research outputs found

    Complex pattern of genetic structuring in the Atlantic salmon (Salmo salar L.) of the River Foyle system in northwest Ireland: disentangling the evolutionary signal from population stochasticity

    Get PDF
    Little is known about the microevolutionary processes shaping within river population genetic structure of aquatic organisms characterized by high levels of homing and spawning site fidelity. Using a microsatellite panel, we observed complex and highly significant levels of intrariver population genetic substructure and Isolation-by-Distance, in the Atlantic salmon stock of a large river system. Two evolutionary models have been considered explaining mechanisms promoting genetic substructuring in Atlantic salmon, the member-vagrant and metapopulation models. We show that both models can be simultaneously used to explain patterns and levels of population structuring within the Foyle system. We show that anthropogenic factors have had a large influence on contemporary population structure observed. In an analytical development, we found that the frequently used estimator of genetic differentiation, FST, routinely underestimated genetic differentiation by a factor three to four compared to the equivalent statistic Jost's Dest (Jost 2008). These statistics also showed a near-perfect correlation. Despite ongoing discussions regarding the usefulness of “adjusted”FST statistics, we argue that these could be useful to identify and quantify qualitative differences between populations, which are important from management and conservation perspectives as an indicator of existence of biologically significant variation among tributary populations or a warning of critical environmental damage

    The likely suspect’s framework: the need for a life cycle approach for managing Atlantic salmon (Salmo salar) stocks across multiple scales

    Get PDF
    Publication history: Accepted - 10 May 2022: Published online - 8 June 2022The ongoing declines in Atlantic salmon populations across its range underscore the need for co-ordinated scientific-based knowledge to support management and decisions for their conservation. Current salmon management actions remain largely focused on addressing bottlenecks to production in the freshwater phase of the life-cycle, whereas the continued declines observed in the recent decades are thought to be driven primarily by constraints on the marine phase. The challenges brought by global warming and other emerging stressors require immediate actions, requiring us to re-think the methods behind stock assessment and forge stronger linkages between data, models and policies to promote more effective management actions. We outline a scientific framework that takes a wider ecosystem view, designed to evaluate holistically a suite of indicators and potential drivers of salmon mortality at key phases of the life cycle. The aims of the proposed “Likely Suspects Framework” are to enhance cross-fertilisation of ideas between assessment processes at the stock-complex scale and stock-specific focused management activities, and to develop new decision support tools to improve management efficiencies and scenario testing. Adopting such an approach provides a new way to catalyse the acquisition and deployment of both existing and new data and models that are urgently needed for assisting the conservation and future stewardship of salmon stocks on both sides of the Atlantic.This work was supported largely by funding from the UK Missing Salmon Allianc

    GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus):Indication for a weak circadian clock in ungulates

    Get PDF
    Long-term tracking using global positioning systems (GPS) is widely used to study vertebrate movement ecology, including fine-scale habitat selection as well as large-scale migrations. These data have the potential to provide much more information about the behavior and ecology of wild vertebrates: here we explore the potential of using GPS datasets to assess timing of activity in a chronobiological context. We compared two different populations of deer (Cervus elaphus), one in the Netherlands (red deer), the other in Canada (elk). GPS tracking data were used to calculate the speed of the animals as a measure for activity to deduce unbiased daily activity rhythms over prolonged periods of time. Speed proved a valid measure for activity, this being validated by comparing GPS based activity data with head movements recorded by activity sensors, and the use of GPS locations was effective for generating long term chronobiological data. Deer showed crepuscular activity rhythms with activity peaks at sunrise (the Netherlands) or after sunrise (Canada) and at the end of civil twilight at dusk. The deer in Canada were mostly diurnal while the deer in the Netherlands were mostly nocturnal. On an annual scale, Canadian deer were more active during the summer months while deer in the Netherlands were more active during winter. We suggest that these differences were mainly driven by human disturbance (on a daily scale) and local weather (on an annual scale). In both populations, the crepuscular activity peaks in the morning and evening showed a stable timing relative to dawn and dusk twilight throughout the year, but marked periods of daily a-rhythmicity occurred in the individual records. We suggest that this might indicate that (changes in) light levels around twilight elicit a direct behavioral response while the contribution of an internal circadian timing mechanism might be weak or even absent

    A Review of Pink Salmon in the Pacific, Arctic, and Atlantic Oceans

    Get PDF
    The Northern Hemisphere Pink Salmon Expert Group Meeting was held on October 2–3, 2022 in Vancouver, Canada, immediately preceding the International Year of the Salmon (IYS) Synthesis Symposium. The rapid expansion of pink salmon was the theme for the meeting, and experts came together to discuss the current state of knowledge for pink salmon. Specific topics of focus included the range expansion into the Atlantic and Arctic oceans, trends in distribution and abundance, research and monitoring approaches, potential inter-specific interactions, mitigation efforts, and plans for future collaborations. The outcomes of the meeting were presented at the IYS Synthesis Symposium and are further disseminated through this NPAFC Technical Report. The Executive Summary section of this report provides a brief background, a condensed overview of each topic, and concludes with overarching takeaway messages that are intended to guide future collaborations.publishedVersio

    A Review of Pink Salmon in the Pacific, Arctic, and Atlantic Oceans

    Get PDF
    The Northern Hemisphere Pink Salmon Expert Group Meeting was held on October 2–3, 2022 in Vancouver, Canada, immediately preceding the International Year of the Salmon (IYS) Synthesis Symposium. The rapid expansion of pink salmon was the theme for the meeting, and experts came together to discuss the current state of knowledge for pink salmon. Specific topics of focus included the range expansion into the Atlantic and Arctic oceans, trends in distribution and abundance, research and monitoring approaches, potential inter-specific interactions, mitigation efforts, and plans for future collaborations. The outcomes of the meeting were presented at the IYS Synthesis Symposium and are further disseminated through this NPAFC Technical Report. The Executive Summary section of this report provides a brief background, a condensed overview of each topic, and concludes with overarching takeaway messages that are intended to guide future collaborations.publishedVersio

    The population and landscape genetics of the European badger (Meles meles) in Ireland

    Get PDF
    Publication history: Accepted - 27 July 2018; Published - 12 September 2018.The population genetic structure of free-ranging species is expected to reflect landscape-level effects. Quantifying the role of these factors and their relative contribution often has important implications for wildlife management. The population genetics of the European badger (Meles meles) have received considerable attention, not least because the species acts as a potential wildlife reservoir for bovine tuberculosis (bTB) in Britain and Ireland. Herein, we detail the most comprehensive population and landscape genetic study of the badger in Ireland to date—comprised of 454 Irish badger samples, genotyped at 14 microsatellite loci. Bayesian and multivariate clustering methods demonstrated continuous clinal variation across the island, with potentially distinct differentiation observed in Northern Ireland. Landscape genetic analyses identified geographic distance and elevation as the primary drivers of genetic differentiation, in keeping with badgers exhibiting high levels of philopatry. Other factors hypothesized to affect gene flow, including earth worm habitat suitability, land cover type, and the River Shannon, had little to no detectable effect. By providing a more accurate picture of badger population structure and the factors effecting it, these data can guide current efforts to manage the species in Ireland and to better understand its role in bTB.DAFM - Department of Food Agriculture and the Marine, Republic of Ireland; Department of Agriculture Environment and Rural Affairs for Northern Ireland (DAERA-NI

    A microsatellite baseline for genetic stock identification of European Atlantic salmon (Salmo salar L.)

    Get PDF
    Atlantic salmon (Salmo salar L.) populations from different river origins mix in the North Atlantic during the marine life stage. To facilitate marine stock identification, we developed a genetic baseline covering the European component of the species’ range excluding the Baltic Sea, from the Russian River Megra in the north-east, the Icelandic Ellidaar in the west, and the Spanish Ulla in the south, spanning 3737 km North to South and 2717 km East to West. The baseline encompasses data for 14 microsatellites for 26 822 individual fish from 13 countries, 282 rivers, and 467 sampling sites. A hierarchy of regional genetic assignment units was defined using a combination of distance-based and Bayesian clustering. At the top level, three assignment units were identified comprising northern, southern, and Icelandic regions. A second assignment level was also defined, comprising eighteen and twenty-nine regional units for accurate individual assignment and mixed stock estimates respectively. The baseline provides the most comprehensive geographical coverage for an Atlantic salmon genetic data-set, and a unique resource for the conservation and management of the species in Europe. It is freely available to researchers to facilitate identification of the natal origin of European salmon
    corecore