100 research outputs found
Two-step arithmetic word problems
This study uses the perspective of schemes to analyze characteristics of arithmetic word problems that can influence the process of translation from the verbal statement to an arithmetical representation. One characteristic that we have detected in the two-step word problems is the presence of one or two connections (nodes) in schemes that represent them, and this paper explores whether the number of nodes affects the activation of the associated schemas. With students from the 5th and 6th grades of elementary school (11 and 12 years of age), we analyze the written productions and would stress that the number of connections influences the activation of the right schema. Results show that the double connection implicate a greater difficulty for obtaining a correct arithmetical representation. Likewise, the presence of a simple or double connection between the two relationships means that the students commit specific errors that we associate with this characteristic
Modelo de controlador borroso completamente programable de altas prestaciones y su desarrollo
La presente Tesis Doctoral propone un modelo novedoso para la ejecución con altas prestaciones de sistemas borrosos completamente programables en arquitecturas estándar. El modelo desarrollado permite aplicar las técnicas borrosas a nuevos campos en los que hasta ahora no se habían aplicado debido a que no se podían ejecutar a la velocidad suficiente, no se disponían de las capacidades de programación necesarias o una combinación de ambas. Fruto del estudio del estado del arte se llega a la conclusión de que para conseguir procesamiento con altas prestaciones en plataformas estándar es necesaria una fase de compilación que adapte el conocimiento expresado en un sistema borroso a la arquitectura que lo va a ejecutar. El modelo propuesto introduce el concepto de compilación aproximada. Éste concepto se basa en que el diseño de todo sistema borroso es inherentemente aproximado. La compilación aproximada se basa en respetar el sistema borroso original en aquellos puntos en los que el diseñador tiene una certeza total, y generar una aproximación en aquellos en los que no la tiene. Asimismo, el modelo dispone de mecanismos para garantizar una cota de error máxima. El modelo desarrollado puede presentarse también como un aproximador universal, con la ventaja de que su demostración se realiza por construcción. Para la obtención de altas prestaciones ha sido clave tanto la elección de las plataformas de ejecución como la optimización del código obtenido para las mismas. Se detallan los motivos para la elección de las plataformas y las optimizaciones realizadas. Asimismo, se diseña una arquitectura para los motores de inferencia borrosos independientes de plataforma y basada en una memoria caché de interpolación, para que proporcione altas prestaciones. La Tesis Doctoral realiza un estudio de la arquitectura típica de las soluciones borrosas, enumerando las conclusiones en dos hipótesis. Estas hipótesis sirven como base para proponer las arquitecturas óptimas para ejecución de sistemas borrosos y poder garantizar unos tiempos de ejecución mínimos para cualquier sistema
Querying Spatio-temporal Patterns in Mobile Phone-Call Databases
Abstract — Call Detail Record (CDR) databases contain millions of records with information about cell phone calls, including the position of the user when the call was made/received. This huge amount of spatiotemporal data opens the door for the study of human trajectories on a large scale without the bias that other sources (like GPS or WLAN networks) introduce in the population studied. Also, it provides a platform for the development of a wide variety of studies ranging from the spread of diseases to planning of public transport. Nevertheless, previous work on spatiotemporal queries does not provide a framework flexible enough for expressing the complexity of human trajectories. In this paper we present the Spatiotemporal Pattern System (STPS) to query spatiotemporal patterns in very large CDR databases. STPS defines a regular-expression query language that is intuitive and that allows for any combination of spatial and temporal predicates with constraints, including the use of variables. The design of the language took into consideration the layout of the areas being covered by the cellular towers, as well as “areas ” that label places of interested (e.g. neighborhoods, parks, etc) and topological operators. STPS includes an underlying indexing structure and algorithms for query processing using different evaluation strategies. A full implementation of the STPS is currently running with real, very large CDR databases on Telefónica Research Labs. An extensive performance evaluation of the STPS shows that it can efficiently find complex mobility patterns in large CDR databases. I
Assessing the Potential of Ride-Sharing Using Mobile and Social Data
Ride-sharing on the daily home-work-home commute can help individuals save on
gasoline and other car-related costs, while at the same time it can reduce
traffic and pollution. This paper assesses the potential of ride-sharing for
reducing traffic in a city, based on mobility data extracted from 3G Call
Description Records (CDRs, for the cities of Barcelona and Madrid) and from
Online Social Networks (Twitter, collected for the cities of New York and Los
Angeles). We first analyze these data sets to understand mobility patterns,
home and work locations, and social ties between users. We then develop an
efficient algorithm for matching users with similar mobility patterns,
considering a range of constraints. The solution provides an upper bound to the
potential reduction of cars in a city that can be achieved by ride-sharing. We
use our framework to understand the different constraints and city
characteristics on this potential benefit. For example, our study shows that
traffic in the city of Madrid can be reduced by 59% if users are willing to
share a ride with people who live and work within 1 km; if they can only accept
a pick-up and drop-off delay up to 10 minutes, this potential benefit drops to
24%; if drivers also pick up passengers along the way, this number increases to
53%. If users are willing to ride only with people they know ("friends" in the
CDR and OSN data sets), the potential of ride-sharing becomes negligible; if
they are willing to ride with friends of friends, the potential reduction is up
to 31%.Comment: 11 page
Influence of number of connections in the symbolic representation of two-step arithmetic problems
En este trabajo identificamos una variable lingüística en los problemas aritméticos verbales de dos pasos, que denominamos “nodo”. Describimos una experiencia con estudiantes de 5º y 6º de primaria (10 y 12 años) cuyo fin fue observar si esta variable lingüística tiene o no influencia significativa en la elección de las operaciones necesarias para solucionar este tipo de problemas. Los resultados obtenidos muestran que el número de nodos en un problema de dos pasos tiene efecto significativo en el proceso de resolución. Esta influencia no se ve alterada por otros factores considerados en este estudio.In this work we identify a new factor in two-steps arithmetic word problems, which we denominate "node” factor. We describe an experience with 5th and 6th grade primary students (11 and 12-year-old pupils) whose purpose was to observe if this factor has or has not significant influence in the election of the necessary operations to solve this type of problems. The obtained results show that the number of nodes in a problem of two steps has significant effect in the resolution process. This significant influence is not altered by other factors considered in this study
Comparing and modeling land use organization in cities
The advent of geolocated ICT technologies opens the possibility of exploring
how people use space in cities, bringing an important new tool for urban
scientists and planners, especially for regions where data is scarce or not
available. Here we apply a functional network approach to determine land use
patterns from mobile phone records. The versatility of the method allows us to
run a systematic comparison between Spanish cities of various sizes. The method
detects four major land use types that correspond to different temporal
patterns. The proportion of these types, their spatial organization and scaling
show a strong similarity between all cities that breaks down at a very local
scale, where land use mixing is specific to each urban area. Finally, we
introduce a model inspired by Schelling's segregation, able to explain and
reproduce these results with simple interaction rules between different land
uses.Comment: 9 pages, 6 figures + Supplementary informatio
Cross-Checking Different Sources of Mobility Information
The pervasive use of new mobile devices has allowed a better characterization in space and time of human concentrations and mobility in general. Besides its theoretical interest, describing mobility is of great importance for a number of practical applications ranging from the forecast of disease spreading to the design of new spaces in urban environments. While classical data sources, such as surveys or census, have a limited level of geographical resolution (e.g., districts, municipalities, counties are typically used) or are restricted to generic workdays or weekends, the data coming from mobile devices can be precisely located both in time and space. Most previous works have used a single data source to study human mobility patterns. Here we perform instead a cross-check analysis by comparing results obtained with data collected from three different sources: Twitter, census, and cell phones. The analysis is focused on the urban areas of Barcelona and Madrid, for which data of the three types is available. We assess the correlation between the datasets on different aspects: the spatial distribution of people concentration, the temporal evolution of people density, and the mobility patterns of individuals. Our results show that the three data sources are providing comparable information. Even though the representativeness of Twitter geolocated data is lower than that of mobile phone and census data, the correlations between the population density profiles and mobility patterns detected by the three datasets are close to one in a grid with cells of 2×2 and 1×1 square kilometers. This level of correlation supports the feasibility of interchanging the three data sources at the spatio-temporal scales considered.Partial financial support has been received from the Spanish Ministry of Economy (MINECO) and FEDER (EU) under projects MODASS (FIS2011-24785) and INTENSE@COSYP (FIS2012-30634), and from the EU Commission through projects EUNOIA, LASAGNE and INSIGHT. ML acknowledges funding from the Conselleria d'Educació, Cultura i Universitats of the Government of the Balearic Islands, and JJR from the Ramón y Cajal program of MINECO.Peer Reviewe
YouTube y la economía del algoritmo
YouTube navega entre aguas revueltas pese a la solidez de la marca y de su altísimo consumo. Siendo la segunda página web más visitada del mundo según el índice Alexa, sólo tras el buscador de Google –propietaria de la plataforma de vídeo, además-, los nuevos competidores del vídeo online han creado un escenario de fuerte rivalidad en la que conviven diferentes modelos de negocio, contenedores de productos muy diversos, con una más que evidente identidad mutante.
A YouTube se le suponía un modelo definido y una identidad consolidada: era el espacio en el que los usuarios compartían sus vídeos de manera más o menos altruista, donde las discográficas rompían los records de reproducciones con las estrellas de moda y con vídeo-eventos viralizados por sorpresa como Gangnam Style o Despacito, o donde los usuarios seguían vídeo-tutoriales o unboxings de los temas más diversos. Sin embargo, desde el momento en que la plataforma de vídeo de Google comenzó a incentivar la producción de sus usuarios más seguidos a través del patrocinio (mediante el programa de Partners) y, con más fuerza, cuando YouTube empezó a producir contenidos propios, evidenció que los vídeos virales de gatitos, los tutoriales de maquillaje y los clips de intérpretes emergentes del k-pop eran insuficientes para sostener una inversión que se adivina multimillonaria. YouTube no quiere quedarse atrás en la batalla de las OTTs comerciales y se reivindica como marca consolidada capaz de lograr el compromiso de sus clientes a través del pago de una cuota
Small bowel enteroscopy - A joint clinical guideline from the spanish and portuguese small bowel study groups
The present evidence-based guidelines are focused on the
use of device-assisted enteroscopy in the management of
small-bowel diseases. A panel of experts selected by the
Spanish and Portuguese small bowel study groups reviewed
the available evidence focusing on the main indications of
this technique, its role in the management algorithm of each
indication and on its diagnostic and therapeutic yields. A set
of recommendations were issued accordingly.Estas recomendações baseadas na evidência detalham o
uso da enteroscopia assistida por dispositivo no manejo
clínico das doenças do intestino delgado. Um conjunto de
Gastrenterologistas diferenciados em patologia do intestino delgado foi selecionado pelos grupos de estudos Espanhol e Português de intestino delgado para rever a evidência disponível sobre as principais indicações desta
técnica, o seu papel nos algoritmos de manejo de cada
indicação e sobre o seu rendimento diagnóstico e terapêutico. Foi gerado um conjunto de recomendações pelos autores
Exploring the potential of phone call data to characterize the relationship between social network and travel behavior
[EN] Social network contacts have significant influence on individual travel behavior. However, transport models rarely consider social interaction. One of the reasons is the difficulty to properly model social influence based on the limited data available. Non-conventional, passively collected data sources, such as Twitter, Facebook or mobile phones, provide large amounts of data containing both social interaction and spatiotemporal information. The analysis of such data opens an opportunity to better understand the influence of social networks on travel behavior. The main objective of this paper is to examine the relationship between travel behavior and social networks using mobile phone data. A huge dataset containing billions of registers has been used for this study. The paper analyzes the nature of co-location events and frequent locations shared by social network contacts, aiming not only to provide understanding on why users share certain locations, but also to quantify the degree in which the different types of locations are shared. Locations have been classified as frequent (home, work and other) and non-frequent. A novel approach to identify co-location events based on the intersection of users' mobility models has been proposed. Results show that other locations different from home and work are frequently associated to social interaction. Additionally, the importance of non-frequent locations in co-location events is shown. Finally, the potential application of the data analysis results to improve activity-based transport models and assess transport policies is discussed.The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no 318367 (EUNOIA project) and no 611307 (INSIGHT project). The work of ML has been funded under the PD/004/2013 project, from the Conselleria de Educacion, Cultura y Universidades of the Government of the Balearic Islands and from the European Social Fund through the Balearic Islands ESF operational program for 2013-2017.Picornell Tronch, M.; Ruiz Sánchez, T.; Lenormand, M.; Ramasco, JJ.; Dubernet, T.; Frías-Martínez, E. (2015). Exploring the potential of phone call data to characterize the relationship between social network and travel behavior. Transportation. 42(4):647-668. https://doi.org/10.1007/s11116-015-9594-1S647668424Ahas, R., Aasa, A., Silm, S., Tiru, M.: Daily rhythms of suburban commuters’ movements in the tallinn metropolitan area: case study with mobile positioning data. Transp. Res. Part C 18, 45–54 (2010)Arentze, T.,Timmermans, H. J.: social networks, social interactions and activity-travel behavior: a framework for micro-simulation. Paper presented at the 85th annual meeting of the Transportation Research Board, Washington, D. C., Jan 2006 (2006)Arentze, T., Timmermans, H.: Social networks, social interactions, and activity-travel behavior: a framework for microsimulation. Environ. Plan. 35, 1012–1027 (2008)Axhausen, K.W.: Social networks and travel: some hypotheses. In: Donaghy, K.P., Poppelreuter, S., Rudinger, G. (eds.) Social Aspects of Sustainable Transport: Transatlantic Perspectives, pp. 90–108. Ashgate, Aldershot (2005)Bagrow, J.P., Lin, Y.-R.: Mesoscopic structure and social aspects of human mobility. PLoS One 7(5), 1–11 (2012)Bar-Gera, H.: Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from israel. Transp. Res. Part C 15(2007), 380–391 (2007)Becker, R.A., Cáceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: A tale of one city: using cellular network data for urban planning. Pervasive Comput. IEEE 10(4), 18–26 (2011)Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin–destination data from a mobile phone network. IET Intell. Transp. Syst. 1(1), 5–26 (2007)Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular networks. IET Intell. Transp. Syst. 2(3), 179–192 (2008)Caceres, N., Romero, L.M., Benitez, F.G., Castillo, J.M.D.: Traffic flow estimation models using cellular phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)Calabrese, F., Pereira, F. C., Lorenzo, G. D., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computing (2010)Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecommunications and face-to-face interactions: a study using mobile phone data. PLoS One 6(7), e20814 (2011a). doi: 10.1371/journal.pone.0020814Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. Pervasive Comput. IEEE 10(4), 36–44 (2011b)Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: social networks approach. Transportation 33, 463–480 (2006)Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.J.: Collecting social network data to study social activity-travel behaviour: an egocentric approach. Environ. Plan. B 35(6), 961–980 (2008a)Carrasco, J.A., Hogan B., Wellman B., Miller E. J.: Agency in social activity and ICT interactions: The role of social networks in time and space, Tijdschrift voor Economische en Sociale Geografie (J. Eco. Soc. Geogr.), 99(5), 562–583 (2008b)Carrasco, J.A., Miller, E.J., Wellman, B.: How far and with whom do people socialize? Empirical evidence about the distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008b)Carrasco, J.A., Miller, E.J.: The social dimension in action: a multilevel, personal networks model of social activity frequency. Transp. Res. Part A 43(1), 90–104 (2009)Chen, C., Mei, Y.: Does distance still matter in facilitating social ties? The roles of mobility patterns and the built environment. Presented at 93rd TRB annual meeting (2014)Cho E., Myers S.A., Leskovek J.: Friendship and mobility: user movement in location-based social networks. In: KDD ‘11 Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1082–1090 (2011)Clifton, K.J.: The social context of travel behavior. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 441–448. Emerald Press, London (2013)Do T., Gatica-Perez D.: Contextual conditional models for smartphone-based human mobility prediction. In: Proceedings ACM International Conference on Ubiquitous Computing, Pittsburgh, Sept (2012)Doyle, J., Hung, P., Kelly, D., Mcloone, S., Farrell, R.: Utilising mobile phone billing records for travel mode discovery. ISSC 2011, Trinity College Dublin, June (2011)Dubernet, T., Axhausen K. W.: Solution concepts for the simulation of household-level joint descision making in multi-agent travel simulation tools, paper presented at the 14th Swiss Transport Research Conference (STRC), Ascona (2014)Dugundji, E., Walker, J.: Discrete choice with social and spatial network interdependencies: an empirical example using mixed GEV models with field and “panel” effects. Transp. Res. Rec. 1921, 70–78 (2005)Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(2008), 779–782 (2008)Gould, J.: Cell phone enabled travel surveys: the medium moves the message. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 51–70. Emerald Press, Bingley (2013)Habib, K.N., Carrasco, J.A.: Investigating the role of social networks in start time and duration of activities: a trivariate simultaneous econometric model. Transportation Research Record: Journal of the Transportation Research Board 2230, 1–8 (2011)Hackney, Jeremy K., Kay W. Axhausen: An agent model of social network and travel behavior interdependence. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Hackney, J., Marchal, F.: A model for coupling multi-agent social interactions and traffic simulation, in: TRB 2009 annual meeting (2009)Hackney, J., Marchal, F.: A coupled multi-agent microsimulation of social interactions and transportation behavior. Transp. Res. Part A 45, 296–309 (2011)Horni, A.: Destination choice modeling of discretionary activities in transport microsimulations, Ph.D. Thesis, ETH Zurich, Zurich (2013)Isaacman, S.,Becker, R., Caceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in people’s lives from cellular network data. In: Procedings International Conference on Pervasive Computing, San Francisco, June (2011)Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational Social Science. Science 323, 721 (2009)Ma, H., Ronald, N., Arentze, T.A., Timmermans, H.J.P.: New credit mechanism for semicooperative agent-mediated joint activity-travel scheduling. Transp. Res. Rec. 2230, 104–110 (2011)Ma, H., Arentze, T. A., Timmermans, H. J. P.: Incorporating selfishness and altruism into dynamic joint activity-travel scheduling. Paper presented at the 13th international conference on Travel Behaviour Research (IATBR), Toronto, July (2012)Marchal, F., Nagel, K.: Allowed cooperative agents in a microsimulation to share information with each other about activity locations and about other agents, in order to optimize trip chains (2006)Molin, E.J.E., Arentze, T.A., Timmermans, H.J.P.: Social activities and travel demands : a model-based analysis of social-network data. Transp. Res. Rec. 2082, 168–175 (2007)Moore, J., Carrasco, J.A., Tudela, A.: Exploring the links between personal networks, time use, and the spatial distribution of social contacts. Transportation 40(4), 773–788 (2013)Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)Páez, A., Scott, D.M.: Social influence on travel behavior: a simulation example of the decision to telecommute. Environ. Plan. A 39(3), 647–665 (2007)Phithakkitnukoon, S., Calabrese, F., Smoreda, Z., Ratti, C.: Out of sight out of mind: how our mobile social network changes during migration. Proceedings of the IEEE International Conference on Social Computing, pp. 515–520. Cambridge University Press, Cambridge (2011)Phithakkitnukoon, S., Smoreda, Z., Olivier, P.: Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One 7(6), e39253 (2012). doi: 10.1371/journal.pone.0039253Ronald, N.A., Arentze, T.A., Timmermans, H.J.P.: Modeling social interactions between individuals for joint activity scheduling. Transp. Res. Part B 46, 276–290 (2012a)Ronald, N.A., Dignum, V., Jonker, C., Arentze, T.A., Timmermans, H.J.P.: On the engineering of agent-based simulations of social activities with social networks. Inf. Softw. Technol. 54(6), 625–638 (2012b)Rose, G.: Mobile phones as traffic probes: practices, prospects and issues. Transp. Rev. 26(3), 275–291 (2006)Sharmeen, F., Arentze, T., Timmermans, H.: A multilevel path analysis of social network dynamics and the mutual interdependencies between face-to-face and ICT modes of social interaction in the context of life-cycle events. In: Roorda, M.J., Miller, E.J. (eds.) Travel Behaviour Research: Current Foundations, Future Prospects, pp. 411–432. Lulu Press, Toronto (2013)Sharmeen, F., Arentze, T.A., Timmermans, H.J.P.: Dynamics of face-to-face social interaction frequency: role of accessibility, urbanization, changes in geographical distance and path dependence. J. Transp. Geogr. 34, 211–220 (2014)Silm, S., Ahas, R.: The seasonal variability of population in estonian municipalities. Environ. Plan. A 42, 2527–2546 (2010)Silvis, J., Niemeier, D., D’Souza, R.: Social networks and travel behavior: report from an integrated travel diary. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Sobolevsky, S., Szell, M., Campari, R., Couronné, T., Smoreda, Z., et al.: Delineating geographical regions with networks of human interactions in an extensive set of countries. PLoS One 8(12), e81707 (2013)Sohn, K., Kim, D.: Dynamic origin–destination flow estimation using cellular communication system. IEEE Trans. Veh. Technol. 57(5), 2703–2713 (2008)Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(2010), 818–823 (2010a)Song, C., Qu, Z., Blumm, N., Barabási, L.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010b)Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from gsm networks for traffic parameter and urban spatial pattern assessment: A review of applications and opportunities. GeoJournal 78, 223–243 (2011). doi: 10.1007/s10708-011-9413-yVan den Berg, P., Arentze, T., Timmermans, H.J.P.: A path analysis of social networks, telecommunication and social activity–travel patterns. Transp. Res. Part C 26(2013), 256–268 (2013)Wang, H., Calabrese, F., Lorenzo, G. D., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th international IEEE annual conference on intelligent transportation systems, 318–323 (2010)White, J. and Wells, I.: Extracting origin destination information from mobile phone data. Road transport information and Control, 19–21 Mar (2002)Yim, Y.: The state of cellular probes. California PATH Working Paper, UCB-ITS-PRR-2003-25 (2003)Ythier, J., Walker, J.L., Bierlaire, M.: The influence of social contacts and communication use on travel behavior: a smartphone-based study. In: Transportation Research Board annual meeting (2013
- …