12 research outputs found
Synthesis and Characterization of TiO2 Modified with olystyrene and Poly(3-chloro-2-hydroxypropyl Methacrylate) as Adsorbents for the Solid Phase Extraction of Organophosphorus Pesticides
ARTICULO DE INVESTIGACION EN REVISTA INDEXADANovel hy br i d Ti O2 particles were developed and assessed as an adsorbent for solid phase extraction (SPE) of organophosphorus pesticides (fensulfothion, parathion methyl, coumaphos, and diazinon) from spiked water. Th sol-gel method was used to synthesize TiO2 particles, which were coated with free-radical polystyrene (PS) and poly(3-chloro-2-hydroxypropyl methacrylate) (PClHPMA) polymers. Particle structures were determined via Fourier transform infrared spectroscopy to confim that the polymers were successfully anchored to the TiO2 particles. Thrmogravimetric analysis was conducted to determine organic and inorganic matter in TiO2-PS and TiO2-PClHPMA particles showing results of 20 : 80 wt/wt% and 23 : 77 wt/wt%, respectively. SEMEDS and X-ray diffaction test were conducted to determine the morphology and semielemental composition of the particles showing amorphous characteristics. By observing the contact angle, particles coated with PClHPMA were determined to be more hydrophilic than TiO2-PS particles. Th pore size distributions obtained from the N2 adsorption-desorption isotherms were 0.150 and 0.168 cm3gâ1. Th specifi surface area (BET) was 239.9 m2gâ1 for TiO2-PS and 225.7 m2gâ1 for TiO2-PClHPMA. Th synthesized particles showed relatively high yields of adsorption in SPE. Th pesticide recoveries obtained by high performance liquid chromatography ranged from 6 to 26% for TiO2-PClHPMA and 44 to 92% for TiO2-PS.Consejo Nacional de Ciencia y TecnologĂa, CONACyT (83390
Synthesis and Characterization of TiO 2
Novel hybrid TiO2 particles were developed and assessed as an adsorbent for solid phase extraction (SPE) of organophosphorus pesticides (fensulfothion, parathion methyl, coumaphos, and diazinon) from spiked water. The sol-gel method was used to synthesize TiO2 particles, which were coated with free-radical polystyrene (PS) and poly(3-chloro-2-hydroxypropyl methacrylate) (PClHPMA) polymers. Particle structures were determined via Fourier transform infrared spectroscopy to confirm that the polymers were successfully anchored to the TiO2 particles. Thermogravimetric analysis was conducted to determine organic and inorganic matter in TiO2-PS and TiO2-PClHPMA particles showing results of 20â:â80âwt/wt% and 23â:â77âwt/wt%, respectively. SEM-EDS and X-ray diffraction test were conducted to determine the morphology and semielemental composition of the particles showing amorphous characteristics. By observing the contact angle, particles coated with PClHPMA were determined to be more hydrophilic than TiO2-PS particles. The pore size distributions obtained from the N2 adsorption-desorption isotherms were 0.150 and 0.168âcm3gâ1. The specific surface area (BET) was 239.9âm2gâ1 for TiO2-PS and 225.7âm2gâ1 for TiO2-PClHPMA. The synthesized particles showed relatively high yields of adsorption in SPE. The pesticide recoveries obtained by high performance liquid chromatography ranged from 6 to 26% for TiO2-PClHPMA and 44 to 92% for TiO2-PS
Joint Observation of the Galactic Center with MAGIC and CTA-LST-1
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
Synthesis and Characterization of TiO2 Modified with Polystyrene and Poly(3-chloro-2-hydroxypropyl Methacrylate) as Adsorbents for the Solid Phase Extraction of Organophosphorus Pesticides
Novel hybrid TiO2 particles were developed and assessed as an adsorbent for solid phase extraction (SPE) of organophosphorus pesticides (fensulfothion, parathion methyl, coumaphos, and diazinon) from spiked water. The sol-gel method was used to synthesize TiO2 particles, which were coated with free-radical polystyrene (PS) and poly(3-chloro-2-hydroxypropyl methacrylate) (PClHPMA) polymers. Particle structures were determined via Fourier transform infrared spectroscopy to confirm that the polymers were successfully anchored to the TiO2 particles. Thermogravimetric analysis was conducted to determine organic and inorganic matter in TiO2-PS and TiO2-PClHPMA particles showing results of 20â:â80âwt/wt% and 23â:â77âwt/wt%, respectively. SEM-EDS and X-ray diffraction test were conducted to determine the morphology and semielemental composition of the particles showing amorphous characteristics. By observing the contact angle, particles coated with PClHPMA were determined to be more hydrophilic than TiO2-PS particles. The pore size distributions obtained from the N2 adsorption-desorption isotherms were 0.150 and 0.168âcm3gâ1. The specific surface area (BET) was 239.9âm2gâ1 for TiO2-PS and 225.7âm2gâ1 for TiO2-PClHPMA. The synthesized particles showed relatively high yields of adsorption in SPE. The pesticide recoveries obtained by high performance liquid chromatography ranged from 6 to 26% for TiO2-PClHPMA and 44 to 92% for TiO2-PS
Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru
We analyzed 19 annual Landsat Thematic Mapper images from 1984 to 2011 to determine changes of the glaciated surface and snow line elevation in six mountain areas of the Cordillera Huaytapallana range in Peru. In contrast to other Peruvian mountains, glacier retreat in these mountains has been poorly documented, even though this is a heavily glaciated area. These glaciers are the main source of water for the surrounding lowlands, and melting of these glaciers has triggered several outburst floods. During the 28-year study period, there was a 55% decrease in the surface covered by glaciers and the snowline moved upward in different regions by 93 to 157. m. Moreover, several new lakes formed in the recently deglaciated areas. There was an increase in precipitation during the wet season (October-April) over the 28-year study period. The significant increase in maximum temperatures may be related to the significant glacier retreat in the study area. There were significant differences in the wet season temperatures during El Niño (warmer) and La Niña (colder) years. Although La Niña years were generally more humid than El Niño years, these differences were not statistically significant. Thus, glaciers tended to retreat at a high rate during El Niño years, but tended to be stable or increase during La Niña years, although there were some notable deviations from this general pattern. Climate simulations for 2021 to 2050, based on the most optimistic assumptions of greenhouse gas concentrations, forecast a continuation of climate warming at the same rate as documented here. Such changes in temperature might lead to a critical situation for the glaciers of the Cordillera Huaytapallana, and may significantly impact the water resources, ecology, and natural hazards of the surrounding areas. © 2013 Elsevier B.V.This work was supported by funding from the Spanish Research Council (research project I-COOP0089: âGlacier retreat in the Cordillera Blanca and Cordillera Huaytapallana in Peru: Evidences and Impacts on local populationâ)Peer Reviewe
NGFR regulates stromal cell activation in germinal centers
International audienceNerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr(-/-) mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr(-/-) mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr(-/-) mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance
Role of Human Papillomavirus in Penile Carcinomas Worldwide
International audienc
HPV Involvement in Head and Neck Cancers: Comprehensive Assessment of Biomarkers in 3680 Patients
Background: We conducted a large international study to estimate fractions of head and neck cancers (HNCs) attributable to human papillomavirus (HPV-AFs) using six HPV-related biomarkers of viral detection, transcription, and cellular
transformation.
Methods: Formalin-fixed, paraffin-embedded cancer tissues of the oral cavity (OC), pharynx, and larynx were collected from
pathology archives in 29 countries. All samples were subject to histopathological evaluation, DNA quality control, and HPVDNA detection. Samples containing HPV-DNA were further subject to HPV E6*I mRNA detection and to p16INK4a, pRb, p53, and Cyclin D1 immunohistochemistry. Final estimates of HPV-AFs were based on HPV-DNA, HPV E6*I mRNA, and/or p16INK4a
results.
Results: A total of 3680 samples yielded valid results: 1374 pharyngeal, 1264 OC, and 1042 laryngeal cancers. HPVAF estimates based on positivity for HPV-DNA, and for either HPV E6*I mRNA or p16INK4a, were 22.4%, 4.4%, and 3.5% for cancers of the oropharynx, OC, and larynx, respectively, and 18.5%, 3.0%, and 1.5% when requiring simultaneous
positivity for all three markers. HPV16 was largely the most common type. Estimates of HPV-AF in the oropharynx were highest in South America, Central and Eastern Europe, and Northern Europe, and lowest in Southern Europe. Women showed higher HPV-AFs than men for cancers of the oropharynx in Europe and for the larynx in Central-South America.
Conclusions: HPV contribution to HNCs is substantial but highly heterogeneous by cancer site, region, and sex. This study, the largest exploring HPV attribution in HNCs, confirms the important role of HPVs in oropharyngeal cancer and drastically downplays the previously reported involvement of HPVs in the other HNCs