1,829 research outputs found

    Maps of random walks on complex networks reveal community structure

    Full text link
    To comprehend the multipartite organization of large-scale biological and social systems, we introduce a new information theoretic approach that reveals community structure in weighted and directed networks. The method decomposes a network into modules by optimally compressing a description of information flows on the network. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of more than 6000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network -- including physics, chemistry, molecular biology, and medicine -- information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.Comment: 7 pages and 4 figures plus supporting material. For associated source code, see http://www.tp.umu.se/~rosvall

    Restrictions of generalized Verma modules to symmetric pairs

    Full text link
    We initiate a new line of investigation on branching problems for generalized Verma modules with respect to complex reductive symmetric pairs (g,k). Here we note that Verma modules of g may not contain any simple module when restricted to a reductive subalgebra k in general. In this article, using the geometry of K_C orbits on the generalized flag variety G_C/P_C, we give a necessary and sufficient condition on the triple (g,k, p) such that the restriction X|_k always contains simple k-modules for any g-module XX lying in the parabolic BGG category O^p attached to a parabolic subalgebra p of g. Formulas are derived for the Gelfand-Kirillov dimension of any simple k-module occurring in a simple generalized Verma module of g. We then prove that the restriction X|_k is multiplicity-free for any generic g-module X \in O if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n), or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free for any symmetric pair (g, k) and any parabolic subalgebra p with abelian nilradical and for any generic g-module X \in O^p. Explicit branching laws are also presented.Comment: 31 pages, To appear in Transformation Group

    Lattice Kinetics of Diffusion-Limited Coalescence and Annihilation with Sources

    Full text link
    We study the 1D kinetics of diffusion-limited coalescence and annihilation with back reactions and different kinds of particle input. By considering the changes in occupation and parity of a given interval, we derive sets of hierarchical equations from which exact expressions for the lattice coverage and the particle concentration can be obtained. We compare the mean-field approximation and the continuum approximation to the exact solutions and we discuss their regime of validity.Comment: 24 pages and 3 eps figures, Revtex, accepted for publication in J. Phys.

    Defining forgiveness: Christian clergy and general population perspectives.

    Get PDF
    The lack of any consensual definition of forgiveness is a serious weakness in the research literature (McCullough, Pargament &amp; Thoresen, 2000). As forgiveness is at the core of Christianity, this study returns to the Christian source of the concept to explore the meaning of forgiveness for practicing Christian clergy. Comparisons are made with a general population sample and social science definitions of forgiveness to ensure that a shared meaning of forgiveness is articulated. Anglican and Roman Catholic clergy (N = 209) and a general population sample (N = 159) completed a postal questionnaire about forgiveness. There is agreement on the existence of individual differences in forgiveness. Clergy and the general population perceive reconciliation as necessary for forgiveness while there is no consensus within psychology. The clergy suggests that forgiveness is limitless and that repentance is unnecessary while the general population suggests that there are limits and that repentance is necessary. Psychological definitions do not conceptualize repentance as necessary for forgiveness and the question of limits has not been addressed although within therapy the implicit assumption is that forgiveness is limitless.</p

    Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network

    Full text link
    We investigate a model protein interaction network whose links represent interactions between individual proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural fluctuations in different realizations. For biologically-relevant growth rates, the node degree distribution has an algebraic tail with a peculiar rate dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1; reference added and minor rewording of the first paragraph; Title change and major reorganization (but no result changes) in response to referee comments; to be published in PR

    Transfer of K-types on local theta lifts of characters and unitary lowest weight modules

    Full text link
    In this paper we study representations of the indefinite orthogonal group O(n,m) which are local theta lifts of one dimensional characters or unitary lowest weight modules of the double covers of the symplectic groups. We apply the transfer of K-types on these representations of O(n,m), and we study their effects on the dual pair correspondences. These results provide examples that the theta lifting is compatible with the transfer of K-types. Finally we will use these results to study subquotients of some cohomologically induced modules

    Hierarchically coupled ultradian oscillators generating robust circadian rhythms

    Get PDF
    Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase

    The global carbon budget 1959-2011

    Get PDF
    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future

    Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure

    Get PDF
    Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel
    corecore