73 research outputs found

    Meeting review : ESF workshop on "Impact of nucleic acid chemistry on gene function analysis: antisense, aptamers, ribozymes and RNAi"

    Get PDF
    The shortage of functional information compared to the abundance of sequence information characterizes today’s situation in functional genomics. For many years the knock-down of a gene’s product has been the most powerful way of analysing its function. In addition to the complete knock-out by homologous recombination, several different techniques have been developed to temporarily knock down gene expression through methods based on specific sequence recognition, such as knockdown by antisense oligonucleotides, ribozymes, aptamers or RNAi. The ESF workshop on ‘Impact of Nucleic Acid Chemistry on Gene Function Analysis’ brought together researchers who use techniques that are different but highly related. It offered an opportunity for an in-depth discussion of recent progress and common problems. Antisense oligonucleotides aptamers and ribozymes are techniques that have been used successfully for many years to validate targets. However, recent developments, such as increased tightness of binding (e.g. locked nucleic acids) or the combination of different methods (e.g. using aptamers to design ribozymes), have continued to improve the existing techniques. RNA interference (RNAi) is a defence mechanism of the cell against viruses. Since the exact mechanism of action within the cell is still unclear, RNAi was a particularly exciting topic at the workshop and was addressed in the largest number of presentations. Predictability of positional effects (accessibility of RNA) is a problem shared by all techniques using sequence-specific recognition and was the subject of quite controversial debates. The meeting comprised over 50 people from 14 countries (13 European countries and the USA)

    Constraints on possible phase transitions above the nuclear saturation density

    Get PDF
    We compare different models for hadronic and quark phases of cold baryon-rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka-type mean-field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu-Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.Comment: 28 pages, 18 PostScript figures, submitted to Phys. Rev.

    Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Heterozygous copy-number and missense variants in CNTNAP2 and NRXN1 have repeatedly been associated with a wide spectrum of neuropsychiatric disorders such as developmental language and autism spectrum disorders, epilepsy and schizophrenia. Recently, homozygous or compound heterozygous defects in either gene were reported as causative for severe intellectual disability. Methods 99 patients with severe intellectual disability and resemblance to Pitt-Hopkins syndrome and/or suspected recessive inheritance were screened for mutations in CNTNAP2 and NRXN1. Molecular karyotyping was performed in 45 patients. In 8 further patients with variable intellectual disability and heterozygous deletions in either CNTNAP2 or NRXN1, the remaining allele was sequenced. Results By molecular karyotyping and mutational screening of CNTNAP2 and NRXN1 in a group of severely intellectually disabled patients we identified a heterozygous deletion in NRXN1 in one patient and heterozygous splice-site, frameshift and stop mutations in CNTNAP2 in four patients, respectively. Neither in these patients nor in eight further patients with heterozygous deletions within NRXN1 or CNTNAP2 we could identify a defect on the second allele. One deletion in NRXN1 and one deletion in CNTNAP2 occurred de novo, in another family the deletion was also identified in the mother who had learning difficulties, and in all other tested families one parent was shown to be healthy carrier of the respective deletion or mutation. Conclusions We report on patients with heterozygous defects in CNTNAP2 or NRXN1 associated with severe intellectual disability, which has only been reported for recessive defects before. These results expand the spectrum of phenotypic severity in patients with heterozygous defects in either gene. The large variability between severely affected patients and mildly affected or asymptomatic carrier parents might suggest the presence of a second hit, not necessarily located in the same gene.Peer Reviewe

    Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

    Get PDF
    Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments

    Comparative Genomic Characterization of Francisella tularensis Strains Belonging to Low and High Virulence Subspecies

    Get PDF
    Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria

    Organizações familiares por uma lntrodução a sua tradição contemporaneidade e muldisciplinaridade

    Full text link

    Molecular Diagnostics of Lung Cancer in Serous Effusion Samples

    No full text
    For molecular diagnostics of lung cancer samples, often only a small amount of material is available. The ever-increasing number of biomarker testing is in contrast to the amount of material obtained. In that case, cytological specimens, such as serous effusion samples, are one possible option. Effusion samples were prepared as sediment smears or cytospins or as a cell block if needed. Suitable tumor cells areas were marked by a cytopathologist and used for molecular diagnostics, including fast track analysis, parallel sequencing, and/or fluorescence in situ hybridization. In 62 cases of malignant effusion with cells of pulmonary adenocarcinoma, molecular diagnostics were carried out. A fast-track result with the high-resolution melting method for hotspot mutation of KRAS Exon 2 and EGFR exon 21 and fragment length analysis of EGFR exon 19 was available for 43 out of 47 samples (92%). Parallel sequencing was successful for 56 out of 60 samples (93.3%). In the same period, 108 FISH analyses were performed for MET amplification, followed by ROS1, RET, and ALK translocation analysis. If only a limited amount of tissue/biopsy is available, a malignant effusion is advisable to perform on the molecular diagnostics with a high success rate
    corecore