92 research outputs found

    Differential engagement of anterior cingulate corte subdivisions for cognitive and emotional function.

    Get PDF
    Abstract Functional differentiation of dorsal (dACC) and rostral (rACC) anterior cingulate cortex for cognitive and emotional function has received considerable indirect support. Using fMRI, parallel tasks, and within-subject analysis, the present study directly tested the proposed specialization of ACC subdivisions. A Task  Region interaction confirmed more dACC activation during color-word distractors and more rACC activation during emotion-word distractors. Activity in ACC subdivisions differentially predicted behavioral performance. Connectivity with prefrontal and limbic regions also supported distinct dACC and rACC roles. Findings provide direct evidence for differential engagement of ACC subdivisions in cognitive and emotional processing and for differential functional connectivity in the implementation of cognitive control and emotion regulation. Results point to an anatomical and functional continuum rather than segregated operations

    Being Mum’s Confidant, a Boon or Bane? Examining Gender Differences in the Association of Maternal Disclosure with Adolescents’ Depressive Feelings

    Get PDF
    This article reports on a longitudinal study investigating gender differences in the association between maternal disclosure and adolescents’ depressive symptoms. Little research has examined the relationship of parental disclosure to adolescents’ depressive symptoms and research on sex differences is particularly lacking. In a sample of 428 families with a mean age of 13.36 (52% female) of the target adolescents, maternal and children’s disclosure and depressive symptoms were assessed twice with an interval of 4 years. Controlling for the quality of the parent–child relationship and levels of maternal depressive symptoms, the analyses revealed an interaction effect for child’s gender, moderating the effect of maternal disclosure on adolescents’ depressive symptoms. Higher levels of maternal disclosure were accompanied by lower levels of depressive symptoms in girls and higher levels of depressive symptoms in boys. Gender differences in socialization, communication, individuation and social networks might explain why daughters and sons are differently affected by maternal disclosure

    Response of Merkel cell polyomavirus-positive Merkel cell carcinoma xenografts to a survivin inhibitor

    Get PDF
    Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer associated with high mortality. Merkel cell polyomavirus (MCV), discovered in 2008, is associated with ∼80% of MCC. The MCV large tumor (LT) oncoprotein upregulates the cellular oncoprotein survivin through its conserved retinoblastoma protein-binding motif. We confirm here that YM155, a survivin suppressor, is cytotoxic to MCV-positive MCC cells in vitro at nanomolar levels. Mouse survival was significantly improved for NOD-Scid-Gamma mice treated with YM155 in a dose and duration dependent manner for 3 of 4 MCV-positive MCC xenografts. One MCV-positive MCC xenograft (MS-1) failed to significantly respond to YM155, which corresponds with in vitro dose-response activity. Combination treatment of YM155 with other chemotherapeutics resulted in additive but not synergistic cell killing of MCC cell lines in vitro. These results suggest that survivin targeting is a promising therapeutic approach for most but not all MCV-positive MCCs. © 2013 Dresang et al

    Mimicry of Food Intake: The Dynamic Interplay between Eating Companions

    Get PDF
    Numerous studies have shown that people adjust their intake directly to that of their eating companions; they eat more when others eat more, and less when others inhibit intake. A potential explanation for this modeling effect is that both eating companions' food intake becomes synchronized through processes of behavioral mimicry. No study, however, has tested whether behavioral mimicry can partially account for this modeling effect. To capture behavioral mimicry, real-time observations of dyads of young females having an evening meal were conducted. It was assessed whether mimicry depended on the time of the interaction and on the person who took the bite. A total of 70 young female dyads took part in the study, from which the total number of bites (N = 3,888) was used as unit of analyses. For each dyad, the total number of bites and the exact time at which each person took a bite were coded. Behavioral mimicry was operationalized as a bite taken within a fixed 5-second interval after the other person had taken a bite, whereas non-mimicked bites were defined as bites taken outside the 5-second interval. It was found that both women mimicked each other's eating behavior. They were more likely to take a bite of their meal in congruence with their eating companion rather than eating at their own pace. This behavioral mimicry was found to be more prominent at the beginning than at the end of the interaction. This study suggests that behavioral mimicry may partially account for social modeling of food intake

    Monogenic variants in dystonia: an exome-wide sequencing study

    Get PDF
    Background Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. Methods For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. Findings We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222;excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. Interpretation In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations

    State of the science and future directions for research on HIV and cancer : Summary of a joint workshop sponsored by IARC and NCI

    Get PDF
    An estimated 38 million people live with human immunodeficiency virus (HIV) worldwide and are at excess risk for multiple cancer types. Elevated cancer risks in people living with HIV (PLWH) are driven primarily by increased exposure to carcinogens, most notably oncogenic viruses acquired through shared transmission routes, plus acceleration of viral carcinogenesis by HIV-related immunosuppression. In the era of widespread antiretroviral therapy (ART), life expectancy of PLWH has increased, with cancer now a leading cause of co-morbidity and death. Furthermore, the types of cancers occurring among PLWH are shifting over time and vary in their relative burden in different parts of the world. In this context, the International Agency for Research on Cancer (IARC) and the US National Cancer Institute (NCI) convened a meeting in September 2022 of multinational and multidisciplinary experts to focus on cancer in PLWH. This report summarizes the proceedings, including a review of the state of the science of cancer descriptive epidemiology, etiology, molecular tumor characterization, primary and secondary prevention, treatment disparities and survival in PLWH around the world. A consensus of key research priorities and recommendations in these domains is also presented

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
    corecore