952 research outputs found

    Distribution of skates and sharks in the North Sea: 112 years of change

    Get PDF
    How have North Sea skate and shark assemblages changed since the early 20th century when bottom trawling became widespread, whilst their environment became increasingly impacted by fishing, climate change, habitat degradation and other anthropogenic pressures? This article examines long-term changes in the distribution and occurrence of the elasmobranch assemblage of the southern North Sea, based on extensive historical time series (1902–2013) of fishery-independent survey data. In general, larger species (thornback ray, tope, spurdog) exhibited long-term declines, and the largest (common skate complex) became locally extirpated (as did angelshark). Smaller species increased (spotted and starry ray, lesser-spotted dogfish) as did smooth-hound, likely benefiting from greater resilience to fishing and/or climate change. This indicates a fundamental shift from historical dominance of larger, commercially valuable species to current prevalence of smaller, more productive species often of low commercial value. In recent years, however, some trends have reversed, with the (cold-water associated) starry ray now declining and thornback ray increasing. This shift may be attributed to (i) fishing, including mechanised beam trawling introduced in the 1960s–1970s, and historical target fisheries for elasmobranchs; (ii) climate change, currently favouring warm-water above cold-water species; and (iii) habitat loss, including potential degradation of coastal and outer estuarine nursery habitats. The same anthropogenic pressures, here documented to have impacted North Sea elasmobranchs over the past century, are likewise impacting shelf seas worldwide and may increase in the future; therefore, parallel changes in elasmobranch communities in other regions are to be expected

    Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression.

    Get PDF
    The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels

    Effect of annealing treatments on the anisotropy of a magnesium alloy sheet processed by severe rolling

    Get PDF
    The effect of annealing treatments on the normal plastic anisotropy (r-value) of a magnesium alloy, AZ61, processed by severe rolling was investigated. The various annealing treatments produce two effects on microstructure: grain coarsening and slight weakening of the texture. In addition, these treatments produce a noticeable decrease of the anisotropy that was correlated with an increase in strain rate sensitivity and a decrease of work hardening rate. It is concluded that an enhanced contribution of basal slip occurs as a consequence of the annealing treatments.The authors acknowledge the financial support from the CICYT grant MAT 2006-02672 awarded by the Spanish Ministry of Education and Science.Peer reviewe

    Окрема думка судді в кримінальному процесі

    Get PDF
    З’ясовується змістове наповнення правових засад, на підставі яких суддя може викласти окрему думку. Досліджується поняття «окремої думки судді» в різних країнах та правових системах. Висвітлюється механізм реалізації окремої думки судді в порівнянні з правом зарубіжних держав та вносить пропозиції щодо запозичення та ведення аналогічних механізмів реалізації окремої думки судді в Україні.Раскрывается содержание правовых принципов, на основании которых судья может изложить особое мнение. Исследуется понятие «особого мнения судьи » в разных странах и правовых системах. Освещается механизм реализации особого мнения судьи в сравнении с правом зарубежных государств и вносит предложение относительно заимствования и ведения аналогичных механизмов реализации особого мнения судьи в Украине.This article investigated the legal principles on which the judge may express the separate opinion; the existence of the notion of «the separate opinion of judge» in different countries and legal systems is conducted. The author analyzed the mechanism of realization of the separate opinion of judge in comparison with the law of foreign countries and made proposals for borrowing and introduction of the similar mechanisms for realization the dissenting the separate opinion of judge in Ukraine

    Long-term Evolution of Protostellar and Protoplanetary Disks. I. Outbursts

    Get PDF
    As an initial investigation into the long-term evolution of protostellar disks, we explore the conditions required to explain the large outbursts of disk accretion seen in some young stellar objects. We use one-dimensional time-dependent disk models with a phenomenological treatment of the magnetorotational instability (MRI) and gravitational torques to follow disk evolution over long timescales. Comparison with our previous two-dimensional disk model calculations (Zhu et al. 2009b, Z2009b) indicates that the neglect of radial effects and two-dimensional disk structure in the one-dimensional case makes only modest differences in the results; this allows us to use the simpler models to explore parameter space efficiently. We find that the mass infall rates typically estimated for low-mass protostars generally result in AU-scale disk accretion outbursts, as predicted by our previous analysis (Zhu et al. 2009a,Z2009a). We also confirm quasi-steady accretion behavior for high mass infall rates if the values of α\alpha-parameter for the magnetorotational instability is small, while at this high accretion rate convection from the thermal instability may lead to some variations. We further constrain the combinations of the α\alpha-parameter and the MRI critical temperature, which can reproduce observed outburst behavior. Our results suggest that dust sublimation may be connected with full activation of the MRI. This is consistent with the idea that small dust captures ions and electrons to suppress the MRI. In a later paper we will explore both long-term outburst and disk evolution with this model, allowing for infall from protostellar envelopes with differing angular momenta.Comment: Accepted to publish in Ap

    Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles

    Get PDF
    Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants have been challenged in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn1-xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn1-xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn1-xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies indicate that the difference in the ferromagnetic properties of Zn1-xFexO nanoparticles with different surface structures originates from differences in the fraction of the doped Fe ions that participate in ferromagnetic resonance
    corecore