213 research outputs found

    Incidence of grapevine leafroll associated viruses -1, -2, and -3 in Mendoza vineyards

    Get PDF
    Indexación: ScieloViticulture is important in Argentina's economy, especially in the province of Mendoza, which is responsible for more than 75% of the crop cultivated area. In this work, we evaluated the incidence of Grapevine leafroll-associated viruses (GLRaV) -1, -2, and -3 in Vitis vinifera clones of cultivars Cabernet Sauvignon, Cabernet Franc, and Sauvignon Blanc, planted in different zones of Mendoza. The selected clones were previously reported as putatively infected by GLRaV-2. All selected samples were analyzed by DAS-ELISA for GLRaV-1,-2 and -3. GLRaV-2 was the only virus identified in all the analyzed clones. The overall infection rates were 0.6%, 18.8% and 1.2 % for GLRaV-1, 2 and 3 respectively. For the clone Cabernet Sauvignon 337, the infection rate was very high (68.3%).http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1982-56762010000600007&nrm=is

    Incidence of Grapevine Leafroll Associated Viruses -1, -2, and -3 in Mendoza vineyards

    Get PDF
    Viticulture is important in Argentina's economy, especially in the province of Mendoza, which is responsible for more than 75% of the crop cultivated area. In this work, we evaluated the incidence of Grapevine leafroll-associated viruses (GLRaV) -1, -2, and -3 in Vitis vinifera clones of cultivars Cabernet Sauvignon, Cabernet Franc, and Sauvignon Blanc, planted in different zones of Mendoza. The selected clones were previously reported as putatively infected by GLRaV-2. All selected samples were analyzed by DAS-ELISA for GLRaV-1,-2 and -3. GLRaV-2 was the only virus identified in all the analyzed clones. The overall infection rates were 0.6%, 18.8% and 1.2 % for GLRaV-1, 2 and 3 respectively. For the clone Cabernet Sauvignon 337, the infection rate was very high (68.3%).A viticultura é importante para a economia da Argentina, especialmente na província de Mendoza, que abrange mais de 75% da área cultivada do país. Neste trabalho, nós avaliamos a incidência de Grapevine leafroll associated virus (GLRaV) -1, -2 e -3 em clones de Vitis vinifera das cultivares Cabernet Sauvignon, Cabernet Franc e Sauvignon Blanc, cultivadas em diferentes zonas de Mendoza. Os clones selecionados foram previamente relatados como provavelmente infectados por GLRaV-2. Todas as amostras selecionadas foram analisadas por DAS-ELISA para GLRaV-1, -2 e -3. GLRaV-2 foi o único vírus identificado em todos os clones analisados. As incidëncias das infecçoes globais foram 0,6%, 18,8% e 1,2% para GLRaV-1, 2 e 3, respectivamente. No Cabernet Sauvignon clone 337 a incidëncia da infecção foi muito elevado (68,3%)Fil: Lanza Volpe, Melisa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Gomez Talquenca, Gonzalo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Engel, Esteban A. Fundación Ciencia para la Vida; Chile. Universidad Andrés Bello. Facultad de Ciencias de la Salud; ChileFil: Gracia, Olga. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentin

    CRISPR/Cas9-constructed pseudorabies virus mutants reveal the importance of UL13 in alphaherpesvirus escape from genome silencing

    Get PDF
    Latent and recurrent productive infection of long-living cells, such as neurons, enables alphaherpesviruses to persist in their host populations. Still, the viral factors involved in these events remain largely obscure. Using a complementation assay in compartmented primary peripheral nervous system (PNS) neuronal cultures, we previously reported that productive replication of axonally delivered genomes is facilitated by pseudorabies virus (PRV) tegument proteins. Here, we sought to unravel the role of tegument protein UL13 in this escape from silencing. We first constructed four new PRV mutants in the virulent Becker strain using CRISPR/Cas9-mediated gene replacement: (i) PRV Becker defective for UL13 expression (PRV Delta UL13), (ii) PRV where UL13 is fused to eGFP (PRV UL13-eGFP), and two control viruses (iii and iv) PRV where VP16 is fused with mTurquoise at either the N terminus (PRV mTurq-VP16) or the C terminus (PRV VP16-mTurq). Live-cell imaging of PRV capsids showed efficient retrograde transport after axonal infection with PRV UL13-eGFP, although we did not detect dual-color particles. However, immunofluorescence staining of particles in mid-axons indicated that UL13 might be cotransported with PRV capsids in PNS axons. Superinfecting nerve cell bodies with UV-inactivated PRV DUL13 failed to efficiently promote escape from genome silencing compared to UV-PRV wild type and UV-PRV UL13-eGFP superinfection. However, UL13 does not act directly in the escape from genome silencing, as adeno-associated virus (AAV)-mediated UL13 expression in neuronal cell bodies was not sufficient to provoke escape from genome silencing. Based on this, we suggest that UL13 may contribute to initiation of productive infection through phosphorylation of other tegument proteins. IMPORTANCE Alphaherpesviruses have mastered various strategies to persist in an immunocompetent host, including the induction of latency and reactivation in peripheral nervous system (PNS) ganglia. We recently discovered that the molecular mechanism underlying escape from latency by the alphaherpesvirus pseudorabies virus (PRV) relies on a structural viral tegument protein. This study aimed at unravelling the role of tegument protein UL13 in PRV escape from latency. First, we confirmed the use of CRISPR/Cas9-mediated gene replacement as a versatile tool to modify the PRV genome. Next, we used our new set of viral mutants and AAV vectors to conclude the indirect role of UL13 in PRV escape from latency in primary neurons, along with its spatial localization during retrograde capsid transport in axons. Based on these findings, we speculate that UL13 phosphorylates one or more tegument proteins, thereby priming these putative proteins to induce escape from genome silencing

    Novel tool to quantify with single-cell resolution the number of incoming AAV genomes co-expressed in the mouse nervous system.

    Get PDF
    Adeno-associated viral (AAV) vectors are an established and safe gene delivery tool to target the nervous system. However, the payload capacity of <4.9 kb limits the transfer of large or multiple genes. Oversized payloads could be delivered by fragmenting the transgenes into separate AAV capsids that are then mixed. This strategy could increase the AAV cargo capacity to treat monogenic, polygenic diseases and comorbidities only if controlled co-expression of multiple AAV capsids is achieved on each transduced cell. We developed a tool to quantify the number of incoming AAV genomes that are co-expressed in the nervous system with single-cell resolution. By using an isogenic mix of three AAVs each expressing single fluorescent reporters, we determined that expression of much greater than 31 AAV genomes per neuron in vitro and 20 genomes per neuron in vivo is obtained across different brain regions including anterior cingulate, prefrontal, somatomotor and somatosensory cortex areas, and cerebellar lobule VI. Our results demonstrate that multiple AAV vectors containing different transgenes or transgene fragments, can efficiently co-express in the same neuron. This tool can be used to design and improve AAV-based interrogation of neuronal circuits, map brain connectivity, and treat genetic diseases affecting the nervous system

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore