120 research outputs found

    Mapping and Genotypic Analysis of the NK-Lysin Gene in Chicken

    Get PDF
    Antimicrobial peptides (AMP) are important elements of the first line of defence against pathogens in animals. NK-lysin is a cationic AMP that plays a critical role in innate immunity. The chicken NK-lysin gene has been cloned and its antimicrobial and anticancer activity has been described but its location in the chicken genome remains unknown. Here, we mapped the NK-lysin gene and examined the distribution of a functionally significant single nucleotide polymorphism (SNP) among different chicken inbred lines and heritage breeds. A 6000 rad radiation hybrid panel (ChickRH6) was used to map the NK-lysin gene to the distal end of chromosome 22. Two additional genes, the adipocyte enhancer-binding protein 1-like gene (AEBP1) and the DNA polymerase delta subunit 2-like (POLD2) gene, are located in the same NW_003779909 contig as NK-lysin, and were thus indirectly mapped to chromosome 22 as well. Previously, we reported a functionally significant SNP at position 271 of the NK-lysin coding sequence in two different chicken breeds. Here, we examined this SNP and found that the A allele appears to be more common than the G allele in these heritage breeds and inbred lines. The chicken NK-lysin gene mapped to the distal end of chromosome 22. Two additional genes,AEBP1 and POLD2, were indirectly mapped to chromosome 22 also. SNP analyses revealed that the A allele, which encodes a peptide with a higher antimicrobial activity, is more common than the G allele in our tested inbred lines and heritage breeds

    Unraveling the Molecular Basis of Temperature-Dependent Genetic Regulation in Penicillium marneffei

    Get PDF
    Penicillium marneffei is an opportunistic fungal pathogen endemic in Southeast Asia, causing lethal systemic infections in immunocompromised patients. P. marneffei grows in a mycelial form at the ambient temperature of 25°C and transitions to a yeast form at 37°C. The ability to alternate between the mycelial and yeast forms at different temperatures, namely, thermal dimorphism, has long been considered critical for the pathogenicity of P. marneffei, yet the underlying genetic mechanisms remain elusive. Here we employed high-throughput sequencing to unravel global transcriptional profiles of P. marneffei PM1 grown at 25 and 37°C. Among ∼11,000 protein-coding genes, 1,447 were overexpressed and 1,414 were underexpressed at 37°C. Counterintuitively, heat-responsive genes, predicted in P. marneffei through sequence comparison, did not tend to be overexpressed at 37°C. These results suggest that P. marneffei may take a distinct strategy of genetic regulation at the elevated temperature; the current knowledge concerning fungal heat response, based on studies of model fungal organisms, may not be applicable to P. marneffei. Our results further showed that the tandem repeat sequences (TRSs) are overrepresented in coding regions of P. marneffei genes, and TRS-containing genes tend to be overexpressed at 37°C. Furthermore, genomic sequences and expression data were integrated to characterize gene clusters, multigene families, and species-specific genes of P. marneffei. In sum, we present an integrated analysis and a comprehensive resource toward a better understanding of temperature-dependent genetic regulation in P. marneffei

    Cryptic species delineation in freshwater planarians of the genus Dugesia (Platyhelminthes, Tricladida): extreme intraindividual genetic diversity, morphological stasis, and karyological variability

    Get PDF
    The keystone of planarian taxonomy traditionally has been the anatomy of the copulatory apparatus. However, many planarian species comprise asexual fissiparous populations, with the fissiparous animals not developing a copulatory apparatus, thus precluding their morphological identification. Incorporation of molecular data into planarian systematics has been of great value, not only in the identification of fissiparous individuals but also as an additional source of information for determining species boundaries. Nevertheless, the discrepancy between morphological and molecular data has highlighted the need for extra sources of taxonomic information. Moreover, a recent study has pointed out that fissiparous reproduction may lead to high levels of intraindividual genetic diversity in planarians, which may mislead molecular analyses. In the present study we aim to test a new up-to-date integrative taxonomic procedure for planarians, including intraindividual genetic data and additional sources of taxonomic information, besides morphology and DNA, using Dugesia subtentaculata sensu lato as a model organism, a species with an intricate taxonomic history. First, we used three different methods for molecular species delimitation on single locus datasets, both with and without intraindividual information, for formulating Primary Species Hypotheses (PSHs). Subsequently, Secondary Species Hypotheses (SSHs) were formulated on the basis of three types of information: (1) a coalescent-based species delimitation method applied to multilocus data, (2) morphology of the copulatory apparatus, and (3) karyological metrics. This resulted in the delimitation of four morphologically cryptic species within the nominal species D. subtentaculata. Our results provide evidence that the analysis of intraindividual genetic data is essential for properly developing PSHs in planarians. Our study reveals also that karyological differentiation, rather than morphological differentiation, may play an important role in speciation processes in planarians, thus suggesting that the currently known diversity of the group could be highly underestimated

    Integrating Communities of Practice in Technology Development Projects

    Get PDF
    Technology development projects usually benefit when knowledge and expertise are drawn from a variety of sources, including potential users. Orchestrating the involvement of people from disparate groups is a crucial task for project managers. It requires finding a balance between differentiation, when teams work in isolation, and integration, when groups come together to exchange knowledge. This article argues that a “community of practice” perspective can help project managers to achieve this balance, by drawing attention to the assumptions, interests, skills, and formal and tacit knowledge of the different groups involved. Successful integration can be achieved by ensuring that the developing technology is comprehensible to all the groups concerned, and making sure that it satisfies their various interests

    Genetic Networking of the Bemisia tabaci Cryptic Species Complex Reveals Pattern of Biological Invasions

    Get PDF
    BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity

    Evolutionary Analysis of Sequence Divergence and Diversity of Duplicate Genes in

    Get PDF
    Gene duplication as a major source of novel genetic material plays an important role in evolution. In this study, we focus on duplicate genes in Aspergillus fumigatus , a ubiquitous filamentous fungus causing life-threatening human infections. We characterize the extent and evolutionary patterns of the duplicate genes in the genome of A. fumigatus. Our results show that A. fumigatus contains a large amount of duplicate genes with pronounced sequence divergence between two copies, and approximately 10% of them diverge asymmetrically, i.e. two copies of a duplicate gene pair diverge at significantly different rates. We use a Bayesian approach of the McDonald-Kreitman test to infer distributions of selective coefficients γ (=2 N e s) and find that (1) the values of γ for two copies of duplicate genes co-vary positively and (2) the average γ for the two copies differs between genes from different gene families. This analysis highlights the usefulness of combining divergence and diversity data in studying the evolution of duplicate genes. Taken together, our results provide further support and refinement to the theories of gene duplication. Through characterizing the duplicate genes in the genome of A. fumigatus , we establish a computational framework, including parameter settings and methods, for comparative study of genetic redundancy and gene duplication between different fungal species

    SBEToolbox: A Matlab Toolbox for Biological Network Analysis

    Get PDF
    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases

    Genome-wide liver transcriptomic profiling of a malaria mouse model reveals disturbed immune and metabolic responses

    No full text
    Abstract Background The liver is responsible for a range of functions in vertebrates, such as metabolism and immunity. In malaria, the liver plays a crucial role in the interaction between the parasite and host. Although malarial hepatitis is a common clinical complication of severe malaria, other malaria-related liver changes have been overlooked during the blood stage of the parasite life-cycle, in contrast to the many studies that have focused on parasite invasion of and replication in the liver during the hepatic stage of the parasite. Methods A rodent model of malaria was established using Plasmodium yoelii strain 17XL, a lethal strain of rodent malaria, for liver transcriptomic profiling. Results Differentially expressed messenger RNAs were associated with innate and adaptive immune responses, while differentially expressed long noncoding RNAs were enriched in the regulation of metabolism-related pathways, such as lipid metabolism. The coexpression network showed that host genes were related to cellular transport and tissue remodeling. Hub gene analysis of P. yoelii indicated that ubiquitination genes that were coexpressed with the host were evolutionarily conserved. Conclusions Our analysis yielded evidence of activated immune responses, aberrant metabolic processes and tissue remodeling changes in the livers of mice with malaria during the blood stage of the parasite, which provided a systematic outline of liver responses during Plasmodium infection. Graphical Abstrac

    DEBKS: A Tool to Detect Differentially Expressed Circular RNAs

    No full text
    Circular RNAs (circRNAs) are involved in various biological processes and disease pathogenesis. However, only a small number of functional circRNAs have been identified among hundreds of thousands of circRNA species, partly because most current methods are based on circular junction counts and overlook the fact that a circRNA is formed from the host gene by back-splicing (BS). To distinguish the expression difference originating from BS or the host gene, we present differentially expressed back-splicing (DEBKS), a software program to streamline the discovery of differential BS events between two rRNA-depleted RNA sequencing (RNA-seq) sample groups. By applying to real and simulated data and employing RT-qPCR for validation, we demonstrate that DEBKS is efficient and accurate in detecting circRNAs with differential BS events between paired and unpaired sample groups. DEBKS is available at https://github.com/yangence/DEBKS as open-source software
    corecore