132 research outputs found

    Candidate Predisposition Variants in Kaposi Sarcoma as Detected by Whole-Genome Sequencing

    Get PDF
    Familial clustering of classic Kaposi sarcoma (CKS) is rare with, approximately 100 families reported to date. We studied 2 consanguineous families, 1 Iranian and 1 Israeli, with multiple cases of adult CKS and without overt underlying immunodeficiency. We performed genome-wide linkage analysis and whole-genome sequencing to discover the putative genetic cause for predisposition. A 9-kb homozygous intronic deletion in RP11-259O2.1 in the Iranian family and 2 homozygous variants, 1 in SCUBE2 and the other in CDHR5, in the Israeli family were identified as possible candidates. The presented variants provide a robust starting point for validation in independent samples.Peer reviewe

    RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia

    Get PDF
    The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development

    Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

    Get PDF
    In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of TLR3 immunity are prone to HSV-1 encephalitis (HSE) 1–3. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-γ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-γ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele demonstrated that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-γ1.Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies

    DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice

    Get PDF
    In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7? phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion after primary infection with recombinant influenza virus in vivo, they showed greatly reduced memory cell persistence and recall. These findings highlight a key role for DOCK8 in the survival and function of human and mouse CD8 T cells

    X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production

    Get PDF
    Germline mutations in five autosomal genes involved in interleukin (IL)-12–dependent, interferon (IFN)-γ–mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-κB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defective IFN-γ secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-κB/c-Rel–mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-κB activators, such as tumor necrosis factor-α, IL-1β, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-κB/c-Rel–mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans

    Whole Transcriptome-Based Skin Virome Profiling in Typical Epidermodysplasia Verruciformis Reveals α-, β-, and γ-HPV Infections

    Get PDF
    HPVs are DNA viruses include approximately 450 types that are classified into 5 genera (α-, β-, γ-, μ-, and ν-HPV). The γ- and β-HPVs are present in low copy numbers in healthy individuals; however, in patients with an inborn error of immunity, certain species of β-HPVs can cause epidermodysplasia verruciformis (EV), manifesting as recalcitrant cutaneous warts and skin cancer. EV presents as either typical or atypical. Manifestations of typical EV are limited to the skin and are caused by abnormal keratinocyte-intrinsic immunity to β-HPVs due to pathogenic sequence variants in TMC6, TMC8, or CIB1. We applied a transcriptome-based computational pipeline, VirPy, to RNA extracted from normal-appearing skin and wart samples of patients with typical EV to explore the viral and human genetic determinants. In 26 patients, 9 distinct biallelic mutations were detected in TMC6, TMC8, and CIB1, 7 of which are previously unreported to our knowledge. Additionally, 20 different HPV species, including 3 α-HPVs, 16 β-HPVs, and 1 γ-HPV, were detected, 8 of which are reported here for the first time to our knowledge in patients with EV (β-HPV-37, -47, -80, -151, and -159; α-HPV-2 and -57; and γ-HPV-128). This study expands the TMC6, TMC8, and CIB1 sequence variant spectrum and implicates new HPV subtypes in the pathogenesis of typical EV

    Distinct antibody repertoires against endemic human coronaviruses in children and adults.

    Get PDF
    Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage-immunoprecipitation sequencing. Seroprevalence of antibodies to endemic HCoVs ranged between ~4 and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2' cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and non-human coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.This work was supported in part by a grant from the Qatar National Research Fund (PPM1-1220-150017) and funds from Sidra Medicine. I Meyts is a Senior Clinical Investigator at the Research Foundation — Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies; by the KU Leuven C1 grant C16/18/007; by a VIB GC PID grant; by FWO grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. The ULB Center of Human Genetics is supported by the Fonds Erasme
    • …
    corecore