55 research outputs found

    Pattern de pigmentation et contraintes développementales: les sites d'attachement des muscles du vol délimitent le trident thoracique de Drosophila melanogaster

    Get PDF
    International audienceIn their seminal paper published in 1979, Gould and Lewontin argued that some traits arise as by-products of the development of other structures and not for direct utility in themselves. We show here that this applies to the trident, a pigmentation pattern observed on the thorax of Drosophila melanogaster. Using reporter constructs, we show that the expression domain of several genes encoding pigmentation enzymes follows the trident shape. This domain is complementary to the expression pattern of stripe (sr), which encodes an essential transcription factor specifying flight muscle attachment sites. We demonstrate that sr limits the expression of these pigmentation enzyme genes to the trident by repressing them in its own expression domain, i.e. at the flight muscle attachment sites. We give evidence that repression of not only yellow but also other pigmentation genes, notably tan, is involved in the trident shape. The flight muscle attachment sites and sr expression patterns are remarkably conserved in dipterans reflecting the essential role of sr. Our data suggest that the trident is a by-product of flight muscle attachment site patterning that arose when sr was co-opted for the regulation of pigmentation enzyme coding genes

    The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In <it>Drosophila</it>, <it>dMP1</it>, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here.</p> <p>Results</p> <p>Genetic interactions show that <it>corto </it>and <it>dMP1 </it>act together to antagonize <it>rolled </it>(which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation.</p> <p>Conclusions</p> <p>Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.</p

    Specific antiviral activities of the human α interferons are determined at the level of receptor (IFNAR) structure

    Get PDF
    AbstractDifferences in activity among the family of human IFNs α are much reduced if these ligands are assayed on bovine cells. In particular, the activity of IFN αD is much higher on bovine than on human cells. To examine these differences, the bovine counterpart of the human IFNAR has been cloned and expressed in a human cell line. The transfected cell line now recognizes the human IFN αD as a high-specific-activity IFN subtype, indicating that the differences in sensitivity between the bovine and human cells to the human IFN α lie in the structure of the IFNAR chain rather than in the other components of the functional receptor

    Corto and DSP1 interact and bind to a maintenance element of the Scr Hox gene: understanding the role of Enhancers of trithorax and Polycomb

    Get PDF
    BACKGROUND: Polycomb-group genes (PcG) encode proteins that maintain homeotic (Hox) gene repression throughout development. Conversely, trithorax-group (trxG) genes encode positive factors required for maintenance of long term Hox gene activation. Both kinds of factors bind chromatin regions called maintenance elements (ME). Our previous work has shown that corto, which codes for a chromodomain protein, and dsp1, which codes for an HMGB protein, belong to a class of genes called the Enhancers of trithorax and Polycomb (ETP) that interact with both PcG and trxG. Moreover, dsp1 interacts with the Hox gene Scr, the DSP1 protein is present on a Scr ME in S2 cells but not in embryos. To understand better the role of ETP, we addressed genetic and molecular interactions between corto and dsp1. RESULTS: We show that Corto and DSP1 proteins co-localize at 91 sites on polytene chromosomes and co-immunoprecipitate in embryos. They interact directly through the DSP1 HMG-boxes and the amino-part of Corto, which contains a chromodomain. In order to search for a common target, we performed a genetic interaction analysis. We observed that corto mutants suppressed dsp1(1 )sex comb phenotypes and enhanced Antp(Scx )phenotypes, suggesting that corto and dsp1 are simultaneously involved in the regulation of Scr. Using chromatin immunoprecipitation of the Scr ME, we found that Corto was present on this ME both in Drosophila S2 cells and in embryos, whereas DSP1 was present only in S2 cells. CONCLUSION: Our results reveal that the proteins Corto and DSP1 are differently recruited to a Scr ME depending on whether the ME is active, as seen in S2 cells, or inactive, as in most embryonic cells. The presence of a given combination of ETPs on an ME would control the recruitment of either PcG or TrxG complexes, propagating the silenced or active state

    The Enhancer of Trithorax and Polycomb Corto Interacts with Cyclin G in Drosophila

    Get PDF
    BACKGROUND: Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG

    Regulation of AbdBAbd-B expression by Cyclin G and Corto in the abdominal epithelium of DrosophilaDrosophila

    No full text
    International audiencePolycombgroupPolycomb-group (PcGPcG) and trithoraxgrouptrithorax-group (trxGtrxG) genes encode important regulators of homeotic genes, repressors and activators, respectively. They act through epigenetic mechanisms that maintain chromatin structure. The cortocorto gene of Drosophila melanogasterDrosophila\ melanogaster encodes a co-factor of these regulators belonging to the Enhancer of Trithorax and Polycomb class. We have previously shown that Corto maintains the silencing of the homeotic gene AbdominalBAbdominal-B in the embryo and that it interacts with a cyclin, Cyclin G, suggesting that it could be a major actor in the connection between Polycomb/Trithorax function and the cell cycle. We show here that inactivation of Cyclin GCyclin\ G by RNA interference leads to rotated genitalia and cuticle defects in the posterior abdomen of pupae and that corto genetically interacts with Cyclin GCyclin\ G for generating these phenotypes. Examination of these pupae shows that development of the dorsal histoblast nests that will give rise to the adult epithelium is impaired in the posterior segments which identity is specified by AbdominalBAbdominal-B. Using a line that expresses LacZ in the AbdominalBAbdominal-B domain, we show that cortocorto maintains AbdominalBAbdominal-B repression in the pupal epithelium whereas Cyclin GCyclin\ G maintains its activation. These results prompt us to propose that the interaction between the Enhancer of Trithorax and Polycomb Corto and Cyclin G is involved in regulating the balance between cell proliferation and cell differentiation during abdominal epithelium development

    Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    No full text
    International audiencePhenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation
    corecore