587 research outputs found

    A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis.

    Get PDF
    A long-standing challenge in synthetic chemistry is the development of the transamidation reaction. This process, which involves the conversion of one amide to another, is typically plagued by unfavourable kinetic and thermodynamic factors. Although some advances have been made with regard to the transamidation of primary amide substrates, secondary amide transamidation has remained elusive. Here we present a simple two-step approach that allows for the elusive overall transformation to take place using non-precious metal catalysis. The methodology proceeds under exceptionally mild reaction conditions and is tolerant of amino-acid-derived nucleophiles. In addition to overcoming the classic problem of secondary amide transamidation, our studies expand the growing repertoire of new transformations mediated by base metal catalysis

    Clinical importance of cystic fibrosis-related diabetes

    Get PDF
    AbstractThe prevalence of cystic fibrosis-related diabetes (CFRD) and glucose intolerance (IGT) has risen dramatically over the past 20 years as survival has increased for people with cystic fibrosis (CF). Diabetes is primarily caused by pancreatic damage, which reduces insulin secretion, but glucose tolerance is also modified by factors that alter insulin resistance, such as intercurrent illness and infection. CFRD not only causes the symptoms and micro and macrovascular complications seen in type 1 and type 2 diabetes in the general population, but also is associated with accelerated pulmonary decline and increased mortality. Pulmonary effects are seen some years before the diagnosis of CFRD, implying that impaired glucose tolerance may be detrimental.Current practice is to screen for changes in glucose tolerance by regular measurement of fasting blood glucose, by oral glucose tolerance test or a combination of these approaches with symptom review and measurement of HbA1C. Treatment is clearly indicated for those with CFRD and fasting hyperglycaemia to control symptoms and reduce complications. As nutrition is critical in people with CF to maintain body mass and lung function, blood glucose should be controlled in CFRD by adjusting insulin doses to the requirements of adequate food intake and not by calorie restriction. It is less clear whether blood glucose control will have clinical benefits in the management of patients with CFRD without fasting hyperglycaemia or with impaired glucose tolerance and further studies are required to establish the best treatment for this patient group

    Metabolism, Gas Exchange, and Carbon Spiraling in Rivers

    Get PDF
    Ecosystem metabolism, that is, gross primary productivity (GPP) and ecosystem respiration (ER), controls organic carbon (OC) cycling in stream and river networks and is expected to vary predictably with network position. However, estimates of metabolism in small streams outnumber those from rivers such that there are limited empirical data comparing metabolism across a range of stream and river sizes. We measured metabolism in 14 rivers (discharge range 14–84 m3 s−1) in the Western and Midwestern United States (US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station oxygen model solved in a Bayesian framework. GPP ranged from 0.6–22 g O2 m−2 d−1 and ER tracked GPP, suggesting that autotrophic production supports much of riverine ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas exchange estimates from these 14 rivers in agreement with empirical models. Carbon turnover lengths (that is, the distance traveled before OC is mineralized to CO2) ranged from 38 to 1190 km, with the longest turnover lengths in high-sediment, arid-land rivers. We also compared estimated turnover lengths with the relative length of the river segment between major tributaries or lakes; the mean ratio of carbon turnover length to river length was 1.6, demonstrating that rivers can mineralize much of the OC load along their length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d−1, and were not different than measurements from small streams. Given high GPP relative to ER, combined with generally short OC spiraling lengths, rivers can be highly reactive with regard to OC cycling. © 2015, Springer Science+Business Media New York

    An integrated approach to historical population assessment of the great whales: case of the New Zealand southern right whale

    Get PDF
    Accurate estimation of historical abundance provides an essential baseline for judging the recovery of the great whales. This is particularly challenging for whales hunted prior to twentieth century modern whaling, as population-level catch records are often incomplete. Assessments of whale recovery using pre-modern exploitation indices are therefore rare, despite the intensive, global nature of nineteenth century whaling. Right whales (Eubalaena spp.) were particularly exploited: slow swimmers with strong fidelity to sheltered calving bays, the species made predictable and easy targets. Here, we present the first integrated population-level assessment of the whaling impact and pre-exploitation abundance of a right whale, the New Zealand southern right whale (E. australis). In this assessment, we use a Bayesian population dynamics model integrating multiple data sources: nineteenth century catches, genetic constraints on bottleneck size and individual sightings histories informing abundance and trend. Different catch allocation scenarios are explored to account for uncertainty in the population's offshore distribution. From a pre-exploitation abundance of 28 800–47 100 whales, nineteenth century hunting reduced the population to approximately 30–40 mature females between 1914 and 1926. Today, it stands at less than 12% of pre-exploitation abundance. Despite the challenges of reconstructing historical catches and population boundaries, conservation efforts of historically exploited species benefit from targets for ecological restoration

    TGFβ, smooth muscle cells and coronary artery disease: a review

    Get PDF
    Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia

    Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose

    Get PDF
    Background Diabetes is a risk factor for respiratory infection, and hyperglycaemia is associated with increased glucose in airway surface liquid and risk of Staphylococcus aureus infection. Objectives To investigate whether elevation of basolateral/blood glucose concentration promotes airway Staphylococcus aureus growth and whether pretreatment with the antidiabetic drug metformin affects this relationship. Methods Human airway epithelial cells grown at air–liquid interface (±18 h pre-treatment, 30 μM–1 mM metformin) were inoculated with 5×105 colony-forming units (CFU)/cm2 S aureus 8325-4 or JE2 or Pseudomonas aeruginosa PA01 on the apical surface and incubated for 7 h. Wild-type C57BL/6 or db/db (leptin receptor-deficient) mice, 6–10 weeks old, were treated with intraperitoneal phosphate-buffered saline or 40 mg/kg metformin for 2 days before intranasal inoculation with 1×107 CFU S aureus. Mice were culled 24 h after infection and bronchoalveolar lavage fluid collected. Results Apical S aureus growth increased with basolateral glucose concentration in an in vitro airway epithelia–bacteria co-culture model. S aureus reduced transepithelial electrical resistance (RT) and increased paracellular glucose flux. Metformin inhibited the glucose-induced growth of S aureus, increased RT and decreased glucose flux. Diabetic (db/db) mice infected with S aureus exhibited a higher bacterial load in their airways than control mice after 2 days and metformin treatment reversed this effect. Metformin did not decrease blood glucose but reduced paracellular flux across ex vivo murine tracheas. Conclusions Hyperglycaemia promotes respiratory S aureus infection, and metformin modifies glucose flux across the airway epithelium to limit hyperglycaemia-induced bacterial growth. Metformin might, therefore, be of additional benefit in the prevention and treatment of respiratory infection

    Original research by Young twinkle students (ORBYTS): when can students start performing original research?

    Get PDF
    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission's educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers—PhD and post-doctoral scientists—who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of two ORBYTS teams have been published, one in the Astrophysical Journal Supplement Series and another in JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects

    Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation

    Get PDF
    Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (nonwadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer base flow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length
    • …
    corecore