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A B S T R A C T

Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis
are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic
sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the pri-
mary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia,
while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular
injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling
proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the
maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and
has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling.
Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted
cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.

1. Introduction

Classic ultrastructural studies by Schwartz et al were the first to
show the presence of morphologically identifiable vascular smooth
muscle cells (SMCs) migrating though the internal elastic lamina fol-
lowing acute vascular injury in a rat model of balloon angioplasty [1].
Later, seminal work by Clowes et al using [3H]-thymidine labelling
showed that over 40% of medial SMCs were actively proliferating 48
hours post-injury, indicating that a large proportion of SMCs within the
vascular wall retain the capacity to re-enter the cell cycle and con-
tribute to vascular remodelling and repair in adult animals [2]. This
phenotypic plasticity of SMCs is now understood to play a significant
role in the development of intimal hyperplasia, a pathological vascular
remodelling process that occurs during the development of coronary
artery disease following prolonged exposure to dyslipidaemia, hy-
pertension and inflammation [3–5] or as a consequence of revascular-
isation surgery, such as coronary artery bypass grafting (CABG) or
percutaneous coronary intervention (PCI) [6]. In the latter, a combi-
nation of ischemic-reperfusion injury, acute physical damage and in-
creased longitudinal and circumferential shear stress results in en-
dothelial cell (EC) activation, triggering the release of cytokines and
growth factors, including transforming growth factor-beta (TGFβ) [7].
In concert, these growth factors and cytokines drive the de-differ-
entiation of quiescent ‘contractile’ SMCs into an active ‘synthetic’ state,

in which they display enhanced proliferation, migration and secretory
capacity [6].

2. The TGFβ signalling pathway

TGFβ is the prototype of the highly-conserved TGFβ superfamily,
members of which are potent regulators of SMC phenotype and function
in vascular homeostasis and disease [8]. TGFβ superfamily share the
same overall structure, consisting of two extended monomers held to-
gether by an intermolecular disulphide bond [9]. All TGFβ monomers
incorporate a characteristic ‘cysteine knot’ structure, composed of three
intramolecular disulphide bonds linking six conserved cysteine residues
[10]. Three TGFβ isoforms are expressed in mammals (TGFβ 1-3) and
are differentially localised in major blood vessels during development,
with TGFβ1 highly localised to the tunica intima, TGFβ2 restricted to
the tunica media and TGFβ3 expressed throughout the whole vessel
wall [11,12]. In adults, TGFβ1 and TGFβ3 proteins are mainly localised
to the arterial intima, with TGFβ1 present in around 50% of the intimal
stellate-shaped SMC population [13]. TGFβ is secreted as part of a large
latent complex (LLC), consisting of the C-terminal mature TGFβ peptide
and N-terminal latency associated peptide (LAP) covalently bound to
large latent TGFβ binding proteins (LTBP) [14]. LTBPs stabilise latent
TGFβ complexes and facilitate their retention at the cell surface through
direct interactions with fibrillin and other ECM proteins [15], while
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RGD sequences in the LAP target latent TGFβ to integrin receptors [16].
Activation of latent TGFβ at the cell surface is induced primarily by
proteases such as furin and plasmin, which cleave the covalently-bound
LAP-LTBP pair from the mature TGFβ molecule [17]. Proteolytic clea-
vage of LAP-LTBP yields short-lived, biologically active TGFβ homo-
dimers which are able to interact with transmembrane TGFβ type III
receptors such as betaglycan (also known as TβRIII) and endoglin [18].
Betaglycan is expressed in the majority of cell types, whereas endoglin
is most abundantly expressed in vascular ECs, although recent studies
have also shown localisation to SMCs in diseased vessels [19–22]. Both
betaglycan and endoglin are now thought to have important cellular
functions beyond their actions as TGFβ co-receptors, which are re-
viewed at length elsewhere [23,24].

Binding to type III accessory receptors facilitates TGFβ signalling
through presentation of ligand to signal transduction receptors at the
cell surface. Active TGFβ homodimers signal via specific transmem-
brane heteromeric complexes comprised of two type I and two type II
serine/threonine kinase receptors [25]. Five TGFβ superfamily type II
receptors and seven type I receptors exist in mammals [26]. The type I
and type II receptors are structurally similar with small cysteine-rich
ECDs (100-140 amino acids), single TMDs (30-35 amino acids) and
highly conserved intracellular serine/threonine kinase domains (S/
TKD; 350-400 amino acids) [9]. Each member of the TGFβ superfamily
binds to a characteristic combination of type I and type II receptors
(Table 1). Analysis of the crystal structures of TGFβ ligand:receptor
ternary complexes has revealed that the length and conformation of the
ligand fingertips and receptor ligand binding loops are important de-
terminants of ligand: receptor specificity [27]. These studies have il-
lustrated that TGFβ ligands use their conserved Site IIa in their fingertip
region to bind the β1 and β2 strands within the ECD of the TGFβ type II
receptor (TβRII) [28]. Importantly, the β4-β5 region within the ECD of
the TβRII contains a 5-8 amino acid insertion which ensures type II
receptor specificity by blocking binding of TβRII to bone morphoge-
netic protein (BMP) ligands. Of the five mammalian type II receptors,
TGFβ binds specifically to TβRII (also known as TGFBR2), which is
highly expressed throughout the intima and media of adult vessels [13].

Early membrane crosslinking studies confirmed the expression of TβRII
in SMCs, also showing binding of I125TGFβ1 to receptor complexes
composed of type I, II and III TGFβ receptors [29]. TβRII ligand binding
induces the assembly of type I and type II receptors into a heteromeric
complex, within which constitutively active TβRII phosphorylates type
I receptors at several serine and threonine residues within their con-
served glycine-serine (GS) domains [8,30]. TGFβ ligands principally
signal via activin receptor-like kinase 5 (ALK5, a type I receptor also
known as TβRI) [14]. In addition to ALK5, TGFβ can also signal via
another type I receptor called activin receptor-like kinase 1 (ALK1), via
a distinct Smad-mediated signalling pathway to ALK5 [31–35]. While
ALK5 is predominantly expressed in medial SMCs in vessels from
healthy adult animals, ALK1 is chiefly localised to the endothelium,
although it is upregulated in SMCs following acute vascular injury or
during atherogenesis [36–38]. Following activation, type I TGFβ re-
ceptors propagate the signal inside the cell through activation of the
canonical Smad signalling pathway, as well as other Smad-independent
kinase pathways (Fig. 1; [25]). Readers are directed to a series of ex-
cellent reviews on TGFβ signalling via non-canonical kinase pathways
[26,39,40].

3. Canonical Smad TGFβ signalling

Smad proteins are the principal intracellular mediators of TGFβ
superfamily signalling. Of the eight Smad proteins expressed in mam-
mals (Smads 1-8), Smads 2 and 3 are the primary receptor-regulated
Smads (or R-Smads) activated by receptors for the three TGFβ ligands
[25,41]. Smad4, also known as Co-Smad, serves as a common partner

Table 1
- Ligands, receptors and R-Smads in the TGFβ superfamily

Ligand Type I
receptor

Type II
receptor

Type III receptor R-Smad

TGFβ1
TGFβ2
TGFβ3

ALK1/5 TβRII Betaglycan
Endoglin

Smad1/5/8
Smad2/3

BMP2
BMP4

ALK3/6 BMPRII RGM
Betaglycan/Endoglin

Smad1/5/8

BMP5
BMP6
BMP7

ALK2/3/6 BMPRII
ActRIIA
ActRIIB

Betaglycan
Endoglin

Smad1/5/8

BMP8A
BMP8B

ALK3/5 BMPR2/
ActRIIA
ActRIIB/
TβRII

Not known Smad1/5/8
Smad2/3

BMP9
BMP10

ALK1/3/6 BMPRII/
ActRIIA

Endoglin Smad1/5/8

GDF7
GDF6
GDF5

ALK2/3/6 BMPRII/
ActRIIA/
ActRIIB

Not known Smad1/5/8

AMH ALK2/3/6 AMHRII Not known Smad1/5/8
Activin A/AB/B

GDF8
GDF11

ALK4 BMPRII
ActRIIA
ActRIIB

Betaglycan
Endoglin

Smad2/3

BMP16/Nodal ALK7 BMPRII/
ActRIIA
ActRIIB

Not known Smad2/3

TGFβ = transforming growth factor beta, BMP = bone morphogenetic protein,
GDF = growth/differentiation factor, AMH = anti-Mϋllerian hormone, RGM =
repulsive guidance molecule

Fig. 1. - Canonical TGFβ signalling pathway. Active TGFβ homodimers signal
via binding to specific transmembrane receptor complexes comprised of two
type I (TβRI) and two type II (TβRII) serine/threonine kinase receptors. TβRI
and TβRII are structurally similar with small cysteine-rich extracellular do-
mains (ECD), single transmembrane domains (TMD) and highly conserved in-
tracellular serine/threonine domains (S/TKD). TGFβ binding to TβRII induces
the assembly of TβRII and TβRI receptors into a heteromeric complex, within
which constitutively active TβRII phosphorylates TβRI at several serine and
threonine residues within its conserved glycine-serine domain (GSD). R-Smads
become phosphorylated by the activated TβRI at their C-terminal SSXS motif.
The L45 loop of TβRI and the L3 loop of the R-Smad MH2 domain determine R-
Smad receptor specificity, with ALK5 specifically phosphorylating Smads 2 and
3. The adaptor protein Smad anchor for receptor activation (SARA) can also
facilitate recognition of R-Smads by the receptors. I-Smads contain MH2 do-
mains and can act to turn off Smad TGFβ signalling by interfering with Smad-
receptor or Smad-Smad interactions. Phosphorylated R-Smads form a hetero-
meric complex with Co-Smad, accumulate in the nucleus and directly regulate
the transcription of specific target genes.
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for all R-Smads. Smad6 and Smad7 are inhibitory Smads (I-Smads)
which act to turn off Smad TGFβ signalling by interfering with Smad-
receptor or Smad-Smad interactions [25]. In general, all Smads are
widely expressed throughout development and in adult animals [42].
The R-Smads and Co-Smad share homologous N- and C-terminal re-
gions, called the Mad-homology 1 (MH1) and MH2 domains respec-
tively, separated by a divergent proline-rich linker region [43]. I-Smads
contain conserved MH2 domains but do not possess MH1 domains [8].
With the exception of Smad2, the MH1 domains of Smads exhibit se-
quence specific DNA binding activity, whereas MH2 domains mediate
Smad oligomerisation and Smad-receptor interactions [25,44]. The
linker region of R-Smad contains multiple phosphorylation sites which
allow specific crosstalk with other signalling pathways including mi-
togen-activated protein kinases (MAPKs) and cyclin-dependent kinases,
and a PY motif which mediates specific interactions with the Smurf
ubiquitin ligases [25].

In non-stimulated cells, Smads undergo a constant process of nu-
cleocytoplasmic shuttling, with the rate of nuclear export being higher
than the rate of import, such that the R-Smads are predominantly lo-
calised to the cytoplasm [45]. In contrast, I-Smads tend to be localised
within the nucleus in non-stimulated cells and Smad4 is distributed
equally between both compartments [46]. Upon ligand stimulation, R-
Smads become phosphorylated by the activated type I receptor at their
C-terminal SSXS motif, which increases their affinity for Smad4 [25].
The L45 loop of the type I receptor (located adjacent to its GS region)
and the L3 loop of the R-Smad C-terminal domain determine R-Smad
receptor specificity. The primary TGFβ type I receptor in SMCs, ALK5,
specifically phosphorylates Smads 2 and 3 [47,48]. Receptor recogni-
tion of R-Smads can be facilitated by auxiliary proteins, such as the
adaptor protein, Smad anchor for receptor activation (SARA). SARA
contains a phospholipid binding FYVE domain which targets Smads 2
and 3 to the plasma membrane and early endosomes, where it facil-
itates their interaction with the activated TβRI [49]. Phosphorylated R-
Smads form a heteromeric complex with Smad4 and accumulate in the
nucleus following importin-mediated nuclear translocation [25].

Nuclear R-Smad/Smad4 complexes bind directly to Smad-binding
elements (SBE) in the promoters of TGFβ target genes via a highly
conserved β-hairpin loop within their MH1 domain [50]. Although
many Smad-responsive promoter regions contain one or more SBEs
[50], oligonucleotide binding assays have shown that Smad complexes
can also recognise and bind GC-rich promoter sequences, demon-
strating a relaxed DNA-binding specificity of the Smad MH1 domain
[41]. As the affinity of Smad binding to a single SBE is insufficient to
support sustained binding to DNA in the absence of co-operating tran-
scriptional partners [50,51], they exert the majority of their effects on
gene expression in co-operation with DNA binding co-factors, co-acti-
vators and co-repressors [41]. For example, the transcription factor
δEF1 (also known as ZEB-1) is selectively expressed in SMCs and
transactivates the promoters of SMC differentiation markers following
TGFβ1 stimulation of SMCs, by directly binding Smad3 and serum re-
sponse factor (SRF) [52]. Similarly, the transcriptional coactivator
myocardin physically associates with Smad3 in SMCs, co-ordinately
transactivating the promoters of the SM22α, smooth muscle myosin
heavy chain (SMMHC) and smooth muscle α-actin genes (ACTA2; [53]).
Thus, while Smad proteins are ubiquitously expressed, the expression of
Smad transcriptional partners is generally restricted to certain cell
types, thereby providing a mechanism for cell lineage-specific gene
responses [41]. Readers are directed to two excellent recent reviews on
the contextual control of gene transcription elicited by Smad proteins
[54,55].

4. TGFβ in coronary artery disease

Coronary artery disease (CAD) is primarily caused by athero-
sclerosis, which leads to the formation of occlusive, lipid-rich plaques in
affected vessels (Fig. 2A) [56]. Prolonged exposure to cardiovascular

risk factors such as dyslipidemia, hypertension and inflammation pro-
motes endothelial dysfunction, which precedes atherosclerotic lesion
formation [3–5]. The increased vascular permeability of dysfunctional,
activated endothelial cells (ECs) promotes the entry of low density li-
poproteins (LDLs) from the circulation into the vascular intima. Pro-
teoglycans in the arterial wall (such as versican, biglycan and decorin)
bind and retain LDLs, which become oxidised (oxLDL; [57–59]). OxLDL
induces the secretion of chemokines and the expression of leukocyte
adhesion molecules, which together promote monocyte infiltration into
the sub-endothelial space [60]. Within the intima, SMC- and EC-derived
cytokines induce monocytes to differentiate into macrophages that
engulf oxLDL, forming foam cells. In turn, inflammatory cells within the
early lesion secrete cytokines and growth factors which promote the
development of intimal hyperplasia. Resident SMCs are key drivers of
intimal hyperplasia in the initiation and early progression of athero-
sclerosis, which is characterised by SMC dedifferentiation, proliferation
and migration [61]. Secretory SMCs synthesise an abundant array of
ECM components, which form a fibrous cap over the plaque, further
encroaching on the vessel lumen [62]. Increased synthesis of pro-
teoglycans by secretory SMCs also promotes lipoprotein retention in the
growing lesions, while dedifferentiated SMCs acquire phenotypic
characteristics of the osteoblast, adipocyte and macrophage lineages
[63]. Advanced, rupture-prone plaques are characterised by lipid-rich
necrotic cores (composed of apoptotic foam cells and cellular debris)
thin fibrotic caps (a consequence of matrix metalloproteinase secre-
tion), vascular calcification and neoangiogenesis.

Several genome-wide association studies (GWAS) have identified an
association between CAD and single nucleotide polymorphisms (SNPs)
in genes encoding TGFβ signalling pathway components. For example,
functional polymorphisms in the promoter, signal peptide sequence and
coding sequence of the TGFβ1 gene are associated with increased risk of
myocardial infarction [64,65]) and stroke [66]; meta-analyses have
also shown an association between these polymorphisms and CAD
[67–70]. In addition, a joint analysis of two GWAS on CAD patients
identified an association with an intronic SNP in the SMAD3 gene [71]
which was later shown to reduce enhancer activity and attenuate
Smad3 expression [72,73]. Clinical studies have illustrated that plasma
levels of active TGFβ1 are markedly reduced in patients with advanced
atherosclerosis compared with healthy controls [74,75]. In contrast,
other groups have reported an increase in active TGFβ1 levels in the
plasma of CAD patients, where patients with triple vessel disease had
twice the level of circulating active TGFβ1 compared with those with
no or mild CAD [76]. These differences may be due to discrepancies
between sample preparation methods, which can affect the level of
TGFβ1 protein detected in plasma [77]. Nevertheless, im-
munolocalisation studies of human atherosclerotic lesions strongly
support a role for TGFβ in the pathogenesis of CAD, showing high levels
of TGFβ1 and TGFβ3 in SMCs and macrophage-derived foam cells in
early fatty streak lesions, co-localising with TβRII and ALK5
[13]. > 50% of SMCs in early lesions also stain positive for phospho-
Smad2, indicative of TGFβ signalling pathway activation in these cells
[78]. Advanced fibrous lesions also express significant amounts of
TGFβ1, whereas TGFβ3, TβRII and ALK5 are expressed at more reduced
levels in the fibrous plaque and the associated media [13].

Studies in experimental models of atherosclerosis indicate that
TGFβ can be both atheroprotective and atherogenic. Early animal stu-
dies using global TGFβ inhibition or genetic knockout approaches de-
monstrated that reduced availability of TGFβ was pro-atherogenic and
associated with the development of macrophage-rich, pro-inflammatory
plaques which were prone to rupture [79]. Mice heterozygous for the
deletion of tgfb1 on a cholesterol-enriched diet had reduced SMC dif-
ferentiation (determined by levels of αSMA and SMMHC, two mature
SMC marker proteins), accelerated lipid lesion formation and increased
vascular inflammation compared with wild-type littermate controls
[80]. Similarly, administration of a neutralising anti-TGFβ1 antibody
[81], or systemic infusion of a dominant negative TβRII in
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apolipoprotein E (ApoE)-deficient mice [82] significantly enhanced
lipid infiltration in the vascular wall, decreased collagen type I and III
secretion by SMCs and was associated with frequent intraplaque hae-
morrhages. Corroborating these TGFβ knockdown studies, over-
expression of an activated TGFβ1 expression construct via viral gene
transfer markedly reduced atherosclerotic lesion formation in fat-fed
LDL receptor knockout mice [83]. In these animals, medial and intimal
SMCs showed reduced expression of the oxidative stress marker ni-
trotyrosine, with CD68+ macrophage infiltration also substantially
attenuated as a result of diminished SMC-derived M-CSF secretion [83].
Similarly, overexpression of active TGFβ1 in the hearts of ApoE-/- mice
reduced aortic root plaque formation by decreasing inflammatory cell
infiltration and increasing SMC collagen secretion to form more stable
atherosclerotic lesions [84]. Interestingly, pre-incubation of rat SMCs
with atorvastatin enhanced the TGFβ1-mediated activation of Smad2/
3; similar results were observed in ApoE-/- mice treated with a mod-
erate dose of statin, accompanied by increased collagen and αSMA
staining in plaques [85]. Together, these studies support the ‘protective
cytokine’ theory of atherosclerosis [86], indicating that TGFβ can
protect against the development of unstable plaque lesions by

promoting the expression of contractile SMC proteins, supressing leu-
kocyte recruitment, and reinforcing the fibrous cap by enhancing ECM
production by resident SMCs.

There is, however, an important caveat to these observations; while
the induction of contractile marker proteins (such as αSMA and SM22α)
by TGFβ can be viewed as atheroprotective in SMCs, very recent studies
investigating the origin of αSMA+ cells within atherosclerotic lesions
have demonstrated that activation of this transcriptional programme by
TGFβ in endothelial cells (ECs) can instead promote the induction of
atherosclerosis. Using endothelial lineage tracing mice on an ApoE-/-

background (SclCreERT2; R26RstopYFP;ApoE−/−), Evrard et al found
that TGFβ could induce endothelial-to-mesenchymal transition
(EndMT) during atherogenesis, enhancing expression of αSMA and fi-
brotic markers in ECs without affecting collagen expression (87). Of
note, immunohistological evaluation of human atherosclerotic lesions
revealed a higher proportion of cells co-expressing endothelial and fi-
broblast markers in type VI plaques (complicated lesions with unstable
features) compared to type V plaques (stable fibrocalcific lesions/fi-
broatheromas) supporting a role for TGFβ-induced EndMT in the clin-
ical context [87]. There is also accumulating evidence that TGFβ can

Fig. 2. – Vascular remodelling during atherosclerosis (A) and after revascularisation surgery (B) (A) Atherosclerosis is initiated by the activation of the endothelium
in response to oxidative, haemodynamic or biochemical stimuli. Activated endothelial cells (ECs) upregulate surface adhesion molecules and secrete growth factors
and cytokines, promoting rolling adhesion of circulating leukocytes as well as activation of the underlying smooth muscle cells (SMCs). Activated SMCs dediffer-
entiate and start proliferating and migrating, contributing to the growing neointima. Leukocytes adhering to the endothelium migrate into the intima through
diapedesis, maturing into macrophages and phagocytosing low density lipoproteins to become foam cells, characteristic of the ‘fatty streak’ lesions that can be
observed from adolescence onwards. Fibroatheromas form from areas of intimal thickening, which consist of foam cells, remnants of apoptotic SMC and a lipid rich
ECM pool. Early fibroatheromas are characterised by an acellular necrotic core and a thick fibrous cap, composed of collagen fibrils interspersed with SMCs.
Advancing fibroatheromas contain cholesterol crystals, neovessels and lymphocytes, and have thin fibrous caps due to proteolytic ECM degradation, making these
lesions particularly susceptible to rupture and thrombosis. Rupture and thrombosis frequently occurs at the shoulder regions of plaques, where mast cells accumulate
and secrete pro-angiogenic factors and enzymes to further promote microvessel formation. (B) Vein graft implantation or coronary stent deployment induces
endothelial damage and denudation. Within hours, platelets and red blood cells adhere to the endothelial layer, initiating a coagulation cascade that results in the
deposition of fibrin-rich layers. In the weeks following surgery, circulating leukocytes attach and infiltrate the vascular endothelium, while SMCs in the media are
activated and start migrating into the growing neointima. Growth factors and cytokines released by cells in the vessel wall induce SMC proliferation and ECM
deposition, resulting in further intimal thickening and inward vascular remodelling. Intimal thickening can act as a substrate for superimposed atherosclerosis or
neoatherosclerosis, which is frequently observed between 2-5 years following revascularisation surgery. The pathogenesis of superimposed atherosclerosis/neoa-
therosclerosis bears many similarities with native coronary artery atherosclerosis (A), albeit within a much shorter timeframe.
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elicit atherogenic effects through its actions on SMCs in early plaque
lesions. For example, while the promotion of contractile protein ex-
pression in SMCs is an important part of TGFβ’s anti-atherogenic re-
pertoire during the later stages of plaque development, increased vas-
cular resistance and SMC hypercontractility is also associated with the
induction of atherosclerosis [88]. Additionally, TGFβ is now known to
be a potent inducer of proteoglycan (PG) synthesis by SMCs, enhancing
the gene expression and glycosaminoglycan (GAG) sidechain elonga-
tion of PGs such as biglycan [89,90] and versican [91]. PGs directly
contribute to the initiation of atherosclerosis through their electrostatic
interactions with lipoproteins, promoting the retention of lipoproteins
in the sub-endothelial space (reviewed in [92]). Accordingly, treatment
of atheroprone LDLr-/- mice with the TGFβ neutralising antibody 1D11
substantially repressed biglycan expression, reducing biglycan coloca-
lisation with apoB lipoproteins and attenuating atherosclerotic lesion
formation [93]. Finally, it has recently been recognised that TGFβ can
drive the transdifferentiation of SMCs into proliferative, αSMA-positive
migratory myofibroblasts, thereby contributing to the early develop-
ment of atherosclerotic plaques, whilst on the other hand promoting
stability of more advanced lesions through fibrotic cap formation
[94,95]. Thus, while TGFβ generally acts as a potent pro-fibrotic and
anti-inflammatory mediator in CAD, the pathophysiological outcome of
these actions is highly context-dependent, varying according to the
specific cell type, stage of atherosclerosis (early/advanced) and type of
lesion (stable/unstable).

5. TGFβ in acute vascular injury: vein graft failure and restenosis

Revascularisation surgeries such as percutaneous coronary inter-
vention (PCI) or coronary artery bypass grafting (CABG) are frequently
prescribed for advanced or acute presentations of CAD, aiming to widen
occluded coronary arteries. However, the long-term patency of such
procedures is hampered by the development of intimal hyperplasia
within the vessel, resulting in re-occlusion and the need for repeat in-
tervention. Similar to the intimal hyperplasia (IH) that forms a fertile
‘soil’ for atherosclerosis in CAD, IH following revascularisation surgery
is initiated by activation of the endothelium. Stent deployment (PCI) or
exposure of venous bypass conduits to increased arterial shear stress
(CABG) induces acute endothelial injury, leading to adhesion of circu-
lating platelets and monocytes to the endothelium. Pro-inflammatory
growth factors and cytokines released by activated endothelial cells,
platelets and leukocytes drive SMC dedifferentiation, proliferation and
migration, cellular processes that are critical to the development of IH.
Medial SMC proliferation is rapidly induced following vascular injury
and peaks around 7 days post-injury (10 - 20 % medial SMC pro-
liferation; [96] [97]). Proliferating medial SMCs also migrate and ac-
cumulate in the intima, contributing to the overall lesion cell mass
[98,99]. The resulting hyperplastic neointima can act as a substrate for
accelerated atherosclerotic plaque formation, which further contributes
to the occlusion of the vessel. Compared to native CAD, which takes
decades to develop, vein graft atherosclerosis develops over a period of
months to a few years. Lesions are also more concentric and diffuse
than native atherosclerotic lesions and are more susceptible to throm-
bosis and rupture ([100,101]; reviewed in [102]). There is growing
awareness that in-stent atherosclerosis (most frequently termed ‘neoa-
therosclerosis’) is one of the primary causes of late stent failure, with
several studies showing that the development of neoatherosclerosis is
accelerated in drug-eluting stents (DES) compared to first-generation
bare-metal stents (BMS) [103–106]. Although the mechanisms causing
neoatherosclerosis have yet to be fully characterised, histopathological
and intravascular imaging studies indicate that stent-induced shear
stress, chronic inflammation and endothelial dysfunction may be key
contributing factors (Fig. 2B) [102].

Clinical studies of restenotic arteries following balloon angioplasty
were among the first to suggest that TGFβ plays a prominent role in the
development of IH following revascularisation surgery. These studies

showed that the mRNA expression of TGFβ1 was significantly elevated
in restenotic lesions compared with both primary atherosclerotic le-
sions and control non-atherosclerotic tissues [107]. IHC co-staining for
TGFβ1 and αSMA within sections taken adjacent to those studied by in
situ hybridisation demonstrated that TGFβ1 was localised to the intimal
and medial SMC layers in restenotic lesions [107]. Two further groups
demonstrated that the majority of human restenotic lesions showed
positive staining for TGFβ1 throughout the vascular media and intima,
identifying SMCs as a key source of TGFβ1 in restenotic vessels
[108,109]. Pre-clinical studies support this observation, showing that
TGFβ1 is upregulated in SMCs at sites of acute vascular injury in ro-
dents. TGFβ1 mRNA levels were significantly increased in rat carotid
arteries 6 hours post-injury and remained significantly elevated for at
least 2 weeks [110,111]. Increased TGFβ1 expression (both at the
mRNA and protein level) 2 weeks after wounding was associated with a
parallel increase in fibronectin, collagen I and collagen III mRNA ex-
pression, three pro-fibrotic genes known to be regulated by TGFβ [111].
In a porcine coronary angioplasty model, levels of active TGFβ1 were
significantly elevated between 2 hours and 7 days following angio-
plasty, with immunohistochemical studies showing strong localisation
to both SMCs and ECs [112]. TGFβ1 mRNA and protein levels have also
been shown to be chronically upregulated 6 months post-grafting in a
rabbit CABG model, accompanied by increases in connective tissue
growth factor (CTGF), a well-defined TGFβ1 responsive gene [113].

Subsequently, numerous in vivo interventional studies have con-
vincingly shown that TGFβ promotes IH in vein grafts and models of
PCI (Table 2). Overexpression of TGFβ1 in porcine arteries using an
expression plasmid resulted in increased procollagen, collagen and
proteoglycan synthesis by neointimal SMCs and was accompanied by
marked intimal and medial hyperplasia [114]. Furthermore, adenoviral
overexpression of active TGFβ1 in uninjured rat arteries resulted in a
hyperplasic neointima [96] or a larger collagen-rich neointima in
grafted rat arteries compared with control [115]. Similarly, infusion of
purified recombinant TGFβ1 into rats 2 weeks after carotid artery in-
jury increased [3H]-thymidine-labelled SMC nuclei within the neoin-
tima, indicating that TGFβ1 stimulates SMC proliferation as well as
collagen synthesis in this model of vascular injury [111]. Substantiating
these TGFβ1 overexpression studies, inhibition of TGFβ by antisense
treatment or by intravenous infusion of a soluble TβRII reduced IH and
adventitial fibrosis in balloon-injured rat carotid arteries [116,117].
Interestingly, adenovirus-mediated overexpression of TGFβ3 (but not
TGFβ1) in pig coronary arteries inhibited constrictive remodelling and
reduced lumen loss after coronary angioplasty [118]. Similarly, direct
infusion of TGFβ3 to goat carotid arteries after anastomosis reduced
vessel wall thickness by 30%, in part by reducing collagen type VII
content 3 months post-surgery [119]. In contrast to the increased in-
timal hyperplasia observed in interventional studies using TGFβ1, these
groups also showed reduced SMC proliferation in TGFβ3-treated ani-
mals, which suggests that there may be differences in how SMCs re-
spond to specific TGFβ isoforms in vivo. The intracellular signalling
mechanisms that drive IH in response to TGFβ have yet to be fully
characterised, however the majority of studies to date have identified
an important role for the canonical Smad2/3 pathway. Kundi et al
showed that carotid artery injury in rats leads to significant induction of
Smad3 in medial SMCs, while overexpression of Smad3 via gene
transfer resulted in increased collagen accumulation [120] and SMC
proliferation via a p27-dependent mechanism [97]. Furthermore, ade-
noviral overexpression of Smad7 in rat balloon-injured arteries reduced
intimal thickening, lumen area loss and collagen synthesis 14 days post-
injury [121], with in vitro studies indicating that these effects were due
to direct effects on resident SMCs [122,123]. Interestingly, oral dosing
of an ALK5/ALK4 small molecule inhibitor following balloon injury
decreased intimal collagen production but had no effect on intimal SMC
proliferation [124], suggesting that other TGFβ receptor signalling
pathways may be responsible for TGFβ-induced SMC proliferation.
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6. TGFβ signalling and SMC function

As stated in the introduction, studies have conclusively shown that
TGFβ is a potent regulator of SMC phenotype and function. The
atheroprotective effects of TGFβ are in part attributed to its capacity for
stimulating SMC differentiation by inducing the expression of a large
set of mature SMC genes (including αSMA, SM22α and SMMHC [125])
via Smad2 and/or Smad3, which interact with the SMC-specific pro-
moters at putative SBEs [126,127]. TGFβ also induces serum response
factor (SRF) protein expression and enhances its binding activity to
CArG elements within the promoters of SMC marker genes [128]. In-
terestingly, Qiu et al have shown that Smad3 is the primary mediator
for TGFβ1-induced SM22α expression, while Smad6 and Smad7 repress
its activation [129]. Furthermore, the authors illustrated that Smad3
can bind to a SBE in the first exon of SM22α and directly associate with
the SRF complex in response to TGFβ1 treatment [129]. TGFβ is also a
potent inducer of the synthetic SMC phenotype, stimulating the pro-
duction and secretion of collagen and proteoglycans by SMCs via direct
and indirect interactions with the promoters of these genes [130–132].
However, the effects of TGFβ on SMC behaviour are more variable, with
studies showing that TGFβ can both inhibit and stimulate SMC pro-
liferation and migration. This may be due to the heterogeneous nature
of SMCs, as evidenced by the varying gene expression patterns of
human SMCs derived from primary atherosclerotic plaques, in-stent
stenoses or healthy arteries [133]. At the molecular level, these dif-
ferences have been attributed to varying levels of receptor expression,
membrane localisation of receptors, availability of intracellular sig-
nalling mediators and presence of transcriptional co-regulators within
the nucleus (reviewed in [54,134]). In the next section, we will high-
light key findings on the regulation of SMC proliferation and migration
by TGFβ in the context of intimal hyperplasia and CAD.

7. TGFβ-regulated SMC proliferation

SMC responses to TGFβ in vitro are influenced by factors such as
type of SMC (aortic, venous etc.), cellular density and concentration of
TGFβ [134]. For example, Majack et al found that TGFβ1 inhibited
proliferation of rat aortic SMCs at sub-confluent densities but po-
tentiated SMC growth at high seeding densities [135]. Furthermore,

treatment of cultured porcine coronary artery SMCs with low con-
centrations of TGFβ1 (0.025ng/mL) stimulated SMC proliferation, but
attenuated SMC growth at concentrations of greater than 0.1 ng/mL
[136]. The presence of other growth factors also appears to influence
the effects of TGFβ on SMC proliferation. For instance, treatment of rat
aortic SMCs with TGFβ1 had no significant effect on cell number in
quiescent SMC cultures maintained in 1 % FBS, but markedly inhibited
SMC proliferation in response to 5 % FBS or PDGF-BB in a dose-de-
pendent manner [135,137]. Other studies, however, have shown that
TGFβ potentiates the mitogenicity of FBS, PDGF-BB and bFGF, but only
in confluent SMC cultures [138,139].

TGFβ-induced inhibition of SMC proliferation in vitro has been as-
sociated with G0/G1 cell cycle arrest through downregulation of the
cell cycle regulator, cyclin-dependent kinase 1 (CDK1) [140]. Treat-
ment of mouse aortic SMCs with TGFβ1 for 24 hours substantially re-
duced the percentage of cells in S phase and G2/M phase and increased
the number of cells in G0/G1 [141]. Pharmacological inhibition of the
p38 MAPK pathway (using 10μM SB203580) resulted in complete at-
tenuation of TGFβ-dependent growth inhibition in the absence of any
inhibitory effect on Smad2/3 signalling, as analysed by phosphoryla-
tion, nuclear translocation and reporter gene expression (141), in-
dicating that p38 MAPK may mediate growth inhibition induced by
TGFβ in SMCs. More recently, TGFβ has been shown to inhibit PDGF-
induced SMC proliferation through downregulation of Cyclin D1 [142],
a key regulator of cell cycle transition from G1 to S phase [143]. Here
the authors demonstrated that treatment of human aortic SMCs with
TGFβ1 significantly inhibited PDGF-BB-induced Cyclin D1 mRNA and
protein expression after 24 hours. Interestingly, inhibition of ALK5
using 10 μM SB431542 or siRNA-mediated knockdown of Smad4
completely abolished the inhibitory effect of TGFβ on PDGF-induced
Cyclin D1 expression and restored SMC proliferation in response to
PDGF, suggesting that this occurs through a Smad-dependent me-
chanism [142].

In contrast, certain studies have shown that TGFβ1 can indirectly
promote SMC proliferation in confluent cultures by inducing PDGF-A
gene expression and autocrine production of PDGF-AA [138,144]. Both
these studies found that TGFβ-induced rat aortic SMC proliferation was
mimicked by treatment with exogenous PDGF-AA (> 5 ng/ml) and
partially inhibited by neutralising antibodies to PDGF-AA [138,144].

Table 2
In vivo studies employing different approaches to target TGFβ activity after vascular injury

Therapy
Animal model Outcome compared to control Reference

Soluble TβRII Rat carotid artery
balloon injury

Reduced intimal thickening, constrictive remodelling, lumen area
loss and collagen type I/III mRNA expression

Smith et al, 1999 [116]

ALK4/5/7 inhibitor (SB431542) Rat carotid artery
balloon injury

Reduced intimal thickening, neointimal SMC proliferation, reduced
recruitment of MSCs

Zhao et al, 2016 [182]

ALK4/5 kinase inhibitor (SM16) Rat carotid artery
balloon injury

Reduced intimal thickening, inhibition of adventitial myofibroblast
formation, collagen deposition

Fu et al, 2008 [124]

Anti-TGFβ1 ribozyme oligonucleotides Rat carotid artery
balloon injury

Reduced intimal thickening, TGFβ1 mRNA expression, collagen type
I/III expression and synthesis

Yamamoto et al, 2000 [117]

Anti-TGFβ1 phosphorothioate
oligonucleotides

Rabbit carotid artery
balloon injury

Reduced intimal thickening, proteoglycan synthesis and TGFβ1
mRNA expression

Merrilees et al, 2000 [183]

Tranilast Rat carotid artery
balloon injury

Reduced SMC migration, TGFβ1 mRNA expression, TβRI/TβRII
mRNA expression and αVβ3 mRNA expression

Ward et al, 1998 [184]

TGFβ1 antisense mRNA (adenoviral
overexpression)

Rat femoral artery vein
grafting

Reduced intimal thickening, reduced collagen and TIMP mRNA
expression

Wolff et al, 2006 [115]

Recombinant TGFβ3 Pig coronary artery
balloon injury

Reduced constrictive remodelling, lumen area loss and increased
collagen synthesis

Kingston et al, 2003 [118]

Smad7 (adenoviral overexpression) Rat carotid artery
balloon injury

Reduced intimal thickening, lumen area loss, collagen synthesis and
adventitial fibroblast migration

Maallawaarachchi et al, 2005

p38 MAPK inhibitors Rat carotid artery
balloon injury

Reduced intimal thickening and SMC proliferation Ohashi et al, 2000 [185]

Pyrrole-imidazole polyamide targeting the
TGFβ1 promoter

Rat carotid artery
balloon injury

Reduced intimal thickening, TGFβ1, collagen and fibronectin mRNA
expression and accelerated re-endothelialisation

Yao et al, 2009 [186]

TGFβ = transforming growth factor beta, BMP = bone morphogenetic protein, GDF = growth/differentiation factor, AMH = anti-Mϋllerian hormone, RGM =
repulsive guidance molecule
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However, a later study showed that while TGFβ induced an 8-fold in-
crease in PDGF concentration after 24 hours, application of this con-
ditioned medium (containing ~ 1 ng/mL PDGF-AA) to aortic SMCs did
not increase mitogenic activity, indicating that induction of PDGF-AA
production by TGFβ cannot fully account for the effects of TGFβ on the
proliferation of rat aortic SMCs under all in vitro culture conditions
[145]. Indeed, TGFβ has also been shown to directly stimulate SMC
proliferation through a Smad-dependent mechanism. For instance, Mao
et al demonstrated that aortic SMCs from smooth muscle-specific
Smad4 knockout mice display a 62 % reduction in proliferation in vitro
(as determined by BrdU labelling), compared with SMCs from wild-type
mice [146]. Furthermore, shRNA-mediated knockdown of Smad2 and
Smad3 within wild-type SMCs significantly reduced SMC proliferation
in response to 20 % FBS and the expression of SMC-specific marker
genes [146].

Despite the contrasting in vitro data for the effects of TGFβ on SMC
proliferation, the majority of in vivo evidence indicates that TGFβ is a
potent stimulator of arterial SMC proliferation [96,97,111,147]. For
instance, infusion of recombinant TGFβ1 into rats after carotid artery
balloon injury resulted in a significant increase in the number of [3H]-
thymidine labelled SMC nuclei within the neointima, compared with
untreated rat coronary arteries [111]. Similarly, Schulick et al noted
that localised adenoviral over-expression of TGFβ1 in the endothelium
of uninjured rat carotid arteries resulted in substantial intimal thick-
ening after 4 weeks with marked cellular proliferation (measured by
BrdU incorporation) when compared with control arteries [96]. TGFβ-
induced SMC proliferation in vivo has been shown to be mediated via a
Smad3-dependent mechanism, involving the phosphorylation and nu-
clear export of the cyclin-dependent kinase inhibitor p27 [97]. Ade-
noviral overexpression of Smad3 within balloon-injured rat carotid
arteries significantly enhanced intimal thickening after 14 days and was
associated with increased PCNA expression within intimal SMCs [97]
and increased pERK MAPK expression within whole arteries and iso-
lated SMCs [147]. Conflicting studies performed using a more dama-
ging, inflammatory model of femoral artery wire injury showed en-
hanced neointimal hyperplasia and increased SMC proliferation in
Smad3 knockout mice, indicating that the role of TGFβ in the arterial
response to injury can vary as a function of the inflammatory micro-
environment [148]. Thus, TGFβ/Smad3 can directly enhance SMC
proliferation in vivo through transactivation of the ERK MAPK signalling
pathway; other indirect mechanisms may account for the enhanced or
repressed proliferative responses observed, including modulation of the
inflammatory microenvironment or release of sequestered mitotic
growth factors following ECM degradation.

8. TGFβ-regulated SMC migration

Similar to SMC proliferation, TGFβ has been shown to variably
stimulate and inhibit SMC migration. Early in vitro studies performed in
venous and arterial-derived SMCs showed that PDGF-BB, b-FGF or
serum-induced migration is inhibited by TGFβ1 in a concentration-de-
pendent manner and this effect is independent of cellular density
[149,150]. TGFβ1 can suppress PDGF-BB-induced up-regulation of
MMP-2 within rat arterial SMCs, suggesting that the indirect effects of
TGFβ1 on SMC migration may partly be due to the inhibition of
downstream pro-migratory genes [151]. Conversely, studies also show
that TGFβ can directly stimulate SMC migration. For instance, aortic
SMCs from smooth muscle-specific Smad4 knockout mice displayed
significantly reduced migration in response to serum or PDGF-BB in
vitro, compared with SMCs from wild-type mice [146]. Furthermore,
inhibition of ALK5 using the kinase inhibitor SB431542 or shRNA-
mediated knockdown of Smad2 or Smad3 significantly attenuated SMC
migration in response to serum stimulation [146]. In vitro studies per-
formed on aortic SMCs have shown that TGFβ can also regulate SMC
migration via indirect mechanisms involving the up-regulation of avβ3
mRNA expression, an integrin which is highly expressed following

vascular injury and is important in driving SMC migration [152–155].
Pre-treatment of human aortic SMCs with TGFβ1 was associated with
enhanced migration in response to vitronectin, a serum glycoprotein
which promotes cell spreading and attachment through integrin re-
ceptor binding [154]. Furthermore, treatment of injured rat carotid
artery SMCs with a TGFβ1 neutralising antibody completely abrogated
TGFβ1-induced integrin β3 mRNA up-regulation [156]. Interestingly,
treatment of rats with genistein (a tyrosine kinase inhibitor) following
carotid artery injury markedly inhibited injury-induced up-regulation
of TGFβ1, TGFβ3, integrin av and β3 mRNA expression, compared with
vehicle-treated arteries, suggesting that induction of TGFβ following
vascular injury is broadly reliant on tyrosine kinases [156].

9. Therapeutic targeting of TGFβ in CAD: challenges and
opportunities

As documented above, TGFβ plays a fundamental role in the reg-
ulation of vascular function by affecting SMC proliferation, migration,
differentiation and ECM production in CAD. Mutations in genes en-
coding TGFβ ligands and receptors are also associated with several
developmental disorders and vascular diseases, including Marfan syn-
drome type 2, Loeys-Dietz syndrome, and other vasculopathies with
clinical presentations that include thoracic aortic aneurysms and dis-
sections [157–159]. Hence, components of the TGFβ signalling
pathway are important therapeutic targets for a wide range of vascular
pathologies.

Numerous pre-clinical studies have employed different approaches
to inhibit TGFβ signalling after vascular injury, which have been shown
to reduce intimal thickening compared with controls. However these
approaches have yet to translate to significant clinical gain in the car-
diovascular disease arena, with no TGFβ therapeutics currently on the
market. Promisingly, small-scale clinical trials demonstrated that oral
administration of 600 mg/day tranilast (N-(3,4-dimethoxycinnamoyl)
anthranilic acid), a non-specific inhibitor of TGFβ biosynthesis, was
associated with a significantly reduced risk of restenosis following PCI,
compared with placebo (17.6% vs. 39.4% at 3 months) [160,161].
Originally developed as a treatment for allergic disorders such as
chronic rhinitis and bronchial asthma, tranilast has also successfully
been used (both orally and topically) as an anti-fibrotic agent in the
treatment of hypertrophic scars or keloids [162–164]. However, the
large-scale randomised double-bind clinical trial PRESTO (Prevention
of REStenosis with Tranilast and its Outcomes) examining the effects of
tranilast treatment in 11,484 patients after PCI failed to show improved
clinical outcome (death, MI or repeat revascularisation) compared with
placebo [165]. Worryingly, this trial highlighted some potential ad-
verse effects of tranilast, including hyperbilirubinemia, increased serum
creatinine and alanine transaminases, indicative of liver abnormalities.
Fortunately these adverse effects were reversed upon cessation of
treatment, however the lack of primary and secondary endpoint effi-
cacy in this large-scale trial highlights the complexity of targeting TGFβ
using systemic approaches in multimorbid, highly diverse groups of
patients.

Nevertheless, TGFβ therapeutics are advancing in clinical trials for
other indications, particularly fibrosis and oncology, and results appear
to be positive [166,167]. Indeed, Pirfenidone (5-methyl-1-phenyl-2-
[1H]-pyridone), which inhibits TGFβ production and activity, was ap-
proved by the FDA in October 2014 for treatment of idiopathic pul-
monary fibrosis (IPF). IPF is a devastating progressive lung disease,
with a median survival from time of diagnosis of 3 years; Pirfenidone
was approved on the basis of phase III clinical trials showing a reduc-
tion in forced vital capacity decline (a measure of lung function) and
improved progression-free survival compared to placebo (ASCEND
study [168]). In the oncology field, Galunisertib (LY2157299 mono-
hydrate) a small molecule inhibitor of the ALK5 kinase, has been
evaluated in > 10 clinical trials (alone or in combination with e.g al-
kylating agents) for different types of cancer [169]. The most advanced
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trial currently in progress is a phase II/III randomised, placebo-con-
trolled trial that has enrolled ~140 patients with myelodysplastic
syndrome (MDS; NCT02008318); interim data from this trial shows
good tolerance of the drug and haematological improvement in 26% of
patients enrolled. Of note, recent trials investigating the use of Galu-
nisertib have utilised an adapted, intermittent dosing regimen (14 days
on, 14 days off) due to preclinical studies showing proliferative, in-
flammatory changes in the heart valves and aortae of rats when con-
tinuously dosed with Galunisertib [170]. Although no medically sig-
nificant cardiotoxicities were observed in a first-in-human dose study
administering Galunisertib to glioma patients [171], the potential for
serious adverse events with high-dose, systemic TGFβ agonists or an-
tagonists should not be underestimated. Ultimately, localised and
pathway-specific targeting of TGFβ signalling will be required in order
to achieve optimal therapeutic efficacy whilst avoiding undesired off-
target effects.

While there are acknowledged challenges associated with using
global approaches for targeting TGFβ in multimorbid CAD patients,
new avenues with the potential for more focused targeting of TGFβ in
SMCs have recently opened up. In the last decade, next-generation se-
quencing studies have identified non-coding RNA (ncRNA) sequences
residing in intergenic regions of the genome. These non-coding tran-
scripts are now known to have multiple functions, regulating the
transcription and translation of proximal and distant protein-coding
genes in a context-specific manner (reviewed in [172]). Recent studies
have begun to elucidate the interactions between them and TGFβ
pathway components, identifying novel potential therapeutic targets
for CAD. Early studies showed that TGFβ could alter the expression of
numerous microRNAs (miRs) in various human tissues and cells, the
effects of which appear to be cell-type specific [173]. Microarray ana-
lysis in human carotid artery SMCs revealed a number of differentially
expressed miRs following TGFβ1 treatment, including miR-143/145,
which was significantly up-regulated by TGFβ1 in a concentration- and
time-dependent manner [174]. Treatment of SMC with a specific in-
hibitor of p38MAPK completely blocked TGFβ1-induced miR-143/145
expression and attenuated the expression of SMC contractile genes
(including CNN1, TAGLN and ACTA2) in response to TGFβ1 stimula-
tion [174], identifying an additional mechanism through which TGFβ1
can promote SMC differentiation. Interestingly the miR-143/145
cluster, which is highly enriched in SMCs, has been shown to be sig-
nificantly decreased following acute arterial injury [175] and in mouse
atherosclerotic lesions [175]. Genetic knockout of miR-143/145 led to
a reduction in the number of contractile arterial SMCs and a corre-
sponding increase in synthetic SMCs, as determined by electron mi-
croscopy [176]. Neointimal lesions were also frequently observed in the
femoral arteries of aged miR-143/145-/- mice, with no lesions observed
in wild-type animals [176]. TGFβ has also been shown to regulate the
expression of miR-21 through promoting the processing of pri-miR-21
into pre-miR-21 by the Drosha complex [177]. Importantly, miR-21 is
over-expressed in murine and porcine models of vein grafting and is
highly expressed within αSMA+ SMCs of failed human vein grafts
[178]. Genetic ablation or antisense oligonucleotide-mediated knock-
down of miR-21 significantly attenuated injury-induced neointima
formation by inhibiting SMC proliferation and migration and inducing
SMC apoptosis, highlighting the potential therapeutic benefit of miR-21
inhibition [178,179]. Together, these studies indicate that TGFβ-regu-
lated miRNAs play a critical role in controlling SMC phenotype tran-
sitions and the response of the vascular wall to injury, underlining their
potential as therapeutic targets. Targeting SMC-enriched, disease-dys-
regulated miRs downstream of TGFβ may be a more rational approach
for achieving therapeutic efficacy whilst avoiding undesired side-ef-
fects.

10. Concluding remarks

TGFβ was initially identified in the early 1980’s, when Anita

Roberts and Michael Sporn purified a ‘transformation factor’ that could
render healthy cells malignant [180]. The first observation that this
Janus-like cytokine could have multifunctional effects was made
shortly thereafter, in studies showing that TGFβ could synergise with
PDGF to stimulate fibroblast colony formation (CF) whilst inhibiting
epidermal growth factor-induced CF [181]. From these early begin-
nings, the field of TGFβ research – and indeed the TGFβ superfamily -
has expanded exponentially, with papers on TGFβ now numbering in
the tens of thousands. Nevertheless, important questions have yet to be
fully answered, and our understanding of the many TGFβ paradoxes
remains incomplete. The advent of next-generation sequencing (NGS)
has provided some clarification, identifying hitherto unknown genetic
and phenotypic overlaps between patients who develop cardiovascular
disease and those with inherited vascular conditions caused by muta-
tions in TGFβ genes. Alongside, investigations following on from the
Human Genome Project have started unravelling the complexity of the
transcriptome, identifying non-coding RNA sequences that both reg-
ulate and are regulated by TGFβ signalling. These and other studies
have greatly enhanced our mechanistic understanding of TGFβ, and the
many levels at which this pleiotropic cytokine is controlled. From early
experiments showing that TGFβ enhances the secretion of ECM pro-
teins, we are now beginning to grasp how the cellular microenviron-
ment in turn influences the actions of TGFβ; this is of particular re-
levance to coronary artery disease and intimal hyperplasia, during
which extensive vascular remodelling occurs. Elucidation of these and
other questions regarding the actions and interactions of TGFβ will, we
hope, lead to the development of localised and pathway-specific
therapies that effectively and selectively target the pathological actions
of TGFβ.
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