1 2	Running head: River metabolism and carbon spiraling
3	
4	
5	
6	Metabolism, gas exchange, and carbon spiraling in rivers
7	
8	
9	Robert O. Hall, Jr.
10	Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming,
11	820/1, USA
12	Jennifer I. Tank
14	Department of Biological Sciences University of Notre Dame Notre Dame Indiana
15	46556 USA
16	
17	Michelle A. Baker
18	Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322,
19	USA
20	
21	Emma J. Rosi-Marshall
22	Cary Institute of Ecosystem Studies, Box AB, Millbrook, New York, 12545, USA
23	
24	Erin R. Hotchkiss
25	Program in Ecology and Department of Zoology and Physiology, University of
26	Wyoming, Laramie, Wyoming, 820/1, USA
21	Current address: Department of Feelegy and Environmental Science, Umer University
20 20	90187 Umeå Sweden
30	Joror, onica, Sweden
31	
32	
33	
34	ROH designed the study, conducted fieldwork, analyzed data, and wrote first draft of the
35	paper. JLT, MAB, and EJR-M designed the study, conducted fieldwork, and wrote the
36	paper. ERH conducted field and lab work and wrote the paper.
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	

47 Abstract

48 Ecosystem metabolism, i.e., gross primary productivity (GPP) and ecosystem respiration 49 (ER), controls organic carbon (OC) cycling in stream and river networks and is expected 50 to vary predictably with network position. However, estimates of metabolism in small 51 streams outnumber those from rivers such that there are limited empirical data comparing 52 metabolism across a range of stream and river sizes. We measured metabolism in 14 rivers (discharge range 14 to 84 m³ s⁻¹) in the Western and Midwestern United States 53 54 (US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station oxygen model solved in a Bayesian framework. GPP ranged from 0.6 to 22 g $O_2 m^{-2} d^{-1}$ 55 56 and ER tracked GPP, suggesting that autotrophic production supports much of riverine 57 ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or 58 greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas 59 exchange estimates from these 14 rivers in agreement with empirical models. Carbon 60 turnover lengths (i.e., the distance traveled before OC is mineralized to CO₂) ranged from 61 38-1190 km, with longest turnover lengths in high-sediment, arid-land rivers. We also 62 compared estimated turnover lengths with the relative length of the river segment 63 between major tributaries or lakes; the mean ratio of carbon turnover length to river 64 length was 1.6, demonstrating that rivers can mineralize much of the OC load along their length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d⁻¹, and 65 were not different than measurements from small streams. Given high GPP relative to 66 67 ER, combined with generally short OC spiraling lengths, rivers can be highly reactive 68 with regard to OC cycling.

Key words: rivers, gross primary production, ecosystem respiration, carbon spiraling, gas
exchange, ecosystem metabolism

71

72 Introduction

73 There is a renewed interest in carbon cycling in freshwater ecosystems as 74 ecologists link metabolic processes with regional carbon (C) budgets (Battin and others 75 2009; Tranvik and others 2009), but empirical measurements of metabolism in a wide 76 variety of freshwater ecosystems are lacking, as is our understanding of processes that 77 control variation within and across ecosystems. Ecosystem size and position in the 78 landscape will control variation in rates of C supply and *in situ* metabolism; for example, 79 lake size correlates with metabolism (Staehr and others 2012). In the case of streams and 80 rivers, ecosystem processes such as C cycling will vary both as a function of size (as 81 volumetric flow) and landscape position, given that the downstream movement of water 82 connects headwaters with larger streams and rivers (Webster 2007). The effects of stream 83 size and landscape position on C cycling were initially conceptualized as part of the River 84 Continuum Concept (RCC) where headwater streams were predicted to have high rates of 85 ecosystem respiration (ER) relative to gross primary production (GPP), whereas mid-order 86 reaches were predicted to have higher GPP relative to ER because of increased light 87 availability supporting autochthony combined with reduced allochthonous inputs of C 88 (Vannote and others 1980). In contrast, large rivers with high sediment loads would revert 89 to a pattern of higher ER relative to GPP, like headwater streams, because of decreased 90 light penetration in the water column combined with the import of allochthonous particles 91 from upstream. Data from selected river continua have supported the pattern of increasing

92 GPP/ER downstream from headwaters to non-wadeable rivers (Meyer and Edwards 1990;
93 McTammany and others 2003).

94 Despite strong conceptual foundations and limited empirical data on how larger 95 streams and rivers function, metabolism estimates in rivers are far fewer in number than 96 those from small streams. Only 10% of reach-scale metabolism estimates (reviewed below) have been conducted in rivers with discharge >10 m³ s⁻¹ (~20 m width), while > 97 50% have been made in streams $< 0.1 \text{ m}^3 \text{ s}^{-1}$. Recent advances for estimating gas 98 99 exchange from dissolved oxygen (O₂) data (Holtgrieve and others 2010; Dodds and 100 others 2013) make estimating metabolism in rivers potentially as straightforward as in 101 small streams. In addition, understanding variation and controls on metabolism in rivers 102 will allow ecologists to answer a variety of unanswered questions in river networks. For 103 example, river food webs are based to a large degree on *in situ* primary production 104 (Thorp and Delong 2002; Cross and others 2013), but there are few data on the actual 105 rates of primary production in rivers.

106 More broadly, ecosystem metabolism in rivers is of general interest because of the 107 potential for rivers to store, mineralize, and transport terrestrial organic carbon (OC) 108 before reaching the coastal zone (Battin and others 2008; Raymond and others 2013). It is 109 well known that small streams can respire large quantities of terrestrial OC (Marcarelli 110 and others 2011), yet the role of rivers is less understood, despite evidence showing that 111 big rivers also transform terrestrial OC (Cole and Caraco 2001). Riverine metabolism 112 estimates will also facilitate the calculation of OC spiraling lengths (Newbold and others 113 1982), allowing further comparison among small streams and larger rivers. The OC 114 spiraling method examines downstream C flux relative to mineralization and is a direct

115 estimate of the degree to which rivers mineralize versus transport OC. Oddly, ecosystem 116 ecologists rarely use this spiraling metric to describe the role of streams and rivers in C 117 cvcling despite strong theoretical (Webster 2007) and empirical (Thomas and others 118 2005; Taylor and others 2006; Griffiths and others 2012) examples. Here, we measured metabolism of 14 rivers ranging in size from 14 to 84 $m^{-3} s^{-1}$ 119 120 to link metabolism metrics with OC cycling. We had 3 objectives: 1) develop a two-121 station model, solved via Bayesian inverse modeling of metabolism parameters, to 122 measure metabolism in each of 14 rivers varying in physical attributes in Midwest and 123 Western US; 2) combine riverine metabolism values with others from the literature to 124 examine how the balance of GPP and ER varies across a large size range of streams and 125 rivers; and 3) calculate instantaneous metrics of OC spiraling to estimate the degree to 126 which river reaches can process OC.

127

128 Methods

129 Study sites

130 We chose 14 rivers in the Midwest and Western US that varied chemically, 131 physically, and geomorphically (Table 1, Appendix 1). This study was part of a larger 132 study investigating nutrient cycling in rivers, thus we chose sites to maximize variation in 133 suspended sediment and nutrient concentrations. Sites in western Wyoming and eastern 134 Idaho had low nutrient and low suspended sediment concentrations, central Wyoming 135 and Utah rivers had low to medium nutrient concentrations and medium to high 136 suspended sediments, and Midwestern rivers had generally higher nutrients and low to 137 medium suspended sediments (Table 1). We chose the study reaches by taking in to

consideration the proximity of bridges for adding solutes, the presence of USGS gages
for measurements of discharge, and the presence of boat ramps for reach-scale sampling
logistics. Rivers varied in summer baseflow discharge from 14 to 84 m³ s⁻¹ with an
average of 39 m³ s⁻¹.

142

143 *Field and laboratory methods*

144 At most sites we performed two-station metabolism estimates based on sampling 145 dissolved O₂ through time. To measure dissolved O₂ we anchored 2-4 multi-parameter 146 Hydrolab Minisondes equipped with optical O₂ sensors in areas of moderate downstream 147 flow, at stations 2.5-10.7 km apart (mean 6.1 km) along each river, with mean distance 148 between sondes corresponding to an average of 2.7 h of travel time. We calibrated the 149 sondes river-side in a 100-L pot of air-saturated water that we vigorously bubbled using 150 an aquaculture air pump and air stone. This method of bubbling oversaturates O₂ by 2%. 151 Bubbling this pot in the laboratory and measuring Ar (which has similar diffusivity as O_2) 152 on a membrane-inlet mass spectrometer, we found that Ar was $2\% (\pm 0.15\%)$ 153 oversaturated. This phenomenon is likely due to oversaturation due to bubble-mediated 154 gas exchange (e.g., Hall et al. 2012). We corrected our oxygen data downwards by 2% 155 to counter this over calibration. Following initial calibration, we recorded O₂ readings in 156 this air saturated water to check calibration and that all sondes remained within 2% of 157 saturation; O₂ readings from sondes drifted little during the deployments and thus did not 158 need drift correction. We recorded O₂, temperature, and turbidity using these sondes at 159 5-min intervals during 3-d deployments during summer baseflow conditions (i.e., July or 160 August).

161	We also collected physical and chemical data at each site; discharge $(Q, m^3 s^{-1})$
162	came from nearby USGS gaging stations or gages associated with upstream dams. We
163	measured wetted channel width (w , m) of the reach at ~70 locations throughout the study
164	reach using a laser rangefinder operated from a boat. We also conducted solute tracer
165	additions as part of nutrient uptake experiments, adding Rhodamine WT (RWT) and
166	NaBr in separate pulse additions with target downstream concentrations of 10 μ g RWT L ⁻
167	¹ or 50 μ g Br ⁻ L ⁻¹ . We monitored RWT at 4 stations downstream of the release point
168	using 4 Hydrolab Minisondes equipped with fluorometric sensors programmed to record
169	RWT concentration every 10 seconds while Br samples were manually collected from
170	the river thalweg at timed intervals and analyzed using ion chromatography (Dionex
171	models ICS-5000) using US-EPA standard method 300.0. These tracer releases were
172	used to calculate nominal travel time (i.e., the time for 50% of the solute to pass the
173	downstream station), and mean velocity (V , m min ⁻¹) was then calculated as reach
174	length/nominal travel time, while mean depth (z, m) was estimated based on continuity, z
175	= $Q/(wV)$. We also measured background water column nutrients at each site as part of
176	the nutrient uptake experiments and reach-scale estimates were based on the average of 3
177	to 5 samples collected at 4 sites. We analyzed NH_4^+ -N using the phenol-hypochlorite
178	method (Solorzano 1969), NO ₃ ⁻ -N using the cadmium reduction method (APHA 1995)
179	and SRP using the ascorbic acid method (Murphy and Riley 1962) on a Lachat Flow
180	Injection Autoanalyzer (Lachat Instruments, Loveland, CO, USA).
181	To estimate C spiraling, we sampled particulate OC (POC) and dissolved OC
182	(DOC). We collected POC from 3 grab samples taken in the thalweg at 4 locations from
183	each river. Rivers averaged 0.6 to 1.3 m deep and were turbulent; hence, we did not take

184	depth-integrated samples. For POC, we immediately filtered a known volume of water
185	in the field onto pre-ashed and weighed glass fiber filters (Whatman GF/F), air died the
186	filters and stored them for transport to the lab where we dried them at 60°C, weighed
187	them, and combusted at 500°C. We reweighed the filters to obtain an ash-free dry mass
188	(AFDM) and converted to mg AFDM/L given the volume of sample filtered; we assumed
189	that 50% 0f AFDM was C. Samples for DOC came from triplicate samples at one
190	location. These were filtered with pre-ashed glass fiber filters (Whatman GF/F), acidified
191	with HCl to a pH of 2, and then stored in acid washed and ashed borosilicate amber vials
192	(I-Chem, 40mL). We transported samples on ice to the laboratory, and refrigerated them
193	until analysis on a Shimadzu Total Organic Carbon Analyzer (TOC-5000A; measurement
194	precision of ± 0.05 mg C L ⁻¹).

196 *Metabolism estimation*

197 We estimated metabolism and gas exchange by fitting a two-station Lagrangian model to the dissolved O₂ data, except for the Muskegon, North Platte, and Bear rivers 198 199 where we used a one-station method due to instrument failures or burial of the upstream 200 sondes. A two-station procedure measures metabolism in a defined reach of river 201 between the upstream and downstream O2 sensors, which allows estimation of reach-202 scale metabolism, even below river discontinuities, such as dams, which may be included in the upstream footprint of one-station O2 measurements. A general model for two-203 204 station metabolism is:

205 $Odown_{(t+\tau)} = Oup_{(t)} + GPP + ER + gas exchange$

206

(1)

where $Oup_{(t)}$ is the upstream O₂ concentration (g O₂ m⁻³) and $Odown_{(t+\tau)}$ is downstream O₂ concentration of that same parcel of water following travel time, τ . GPP and ER are both expressed in g O₂ m⁻² d⁻¹, and represented as positive and negative rates of O₂ production and consumption, respectively.

211 An expansion of this model is:

$$Odown_{(t+\tau)} = Oup_{(t)} + \left(\frac{GPP}{z} \times \frac{\sum_{t}^{t+\tau} PPFD}{PPFD_{total}}\right) + \frac{ER}{z}\tau + K\tau \left(\frac{Osatup_{(t)} + Osatdown_{(t+\tau)}}{2} - \frac{Oup_{(t)} + Odown_{(t+\tau)}}{2}\right)$$

212 (2)

213 where z is mean depth (m), Osatup and Osatdown are O_2 saturation concentrations upstream and downstream (g O_2 m⁻³). Gas exchange flux was the gas exchange rate, K 214 (d^{-1}) multiplied by the dissolved O₂ saturation deficit, which we averaged for the 215 216 upstream and downstream stations. We use light to drive GPP in this model (Van de 217 Bogert and others 2007). For any parcel of water, the fraction of light it accumulates is the sum of the photosynthetic photon flux density (PPFD, μ mol m⁻² s⁻¹) accumulated in 218 219 the time interval from t to $(t + \tau)$ divided by the daily total of PPFD (*PPFD*_{total}). Equation 220 2 has *Odown* on both sides; we need *Odown* on the left side of the equation because we 221 are comparing modeled *Odown* with the data. Following some algebra we get:

222

 $Odown_{(t+\tau)}$

$$=\frac{Oup_{(t)} + \left(\frac{GPP}{z} \times \frac{\sum_{t}^{t+\tau} PPFD}{PPFD_{total}}\right) + \frac{ER}{z}\tau + K\tau\left(\frac{Osatup_{(t)} - Oup_{(t)} + Osatdown_{(t+\tau)}}{2}\right)}{1 + \frac{K\tau}{2}}$$

223 (3)

224	Assumptions of this model are that GPP is a linear function of light intensity, ER
225	is constant throughout the day, and that the average of up and down station O_2 saturation
226	deficit is representative for the entire reach. We tested the assumption of linear light
227	relationships by using 1-station models (equation 4 below) for 1 day on each river with a
228	Jassby-Platt light saturation function exactly following Holtgrieve and others (2010).
229	Eight of 14 rivers had linear light response curves. Six showed slightly curvilinear
230	relationships, with increase in GPP 3-10%, with a concomitant two-fold increase in the
231	credible intervals. In a two-station model with 3-h travel times, it would be necessary to
232	divide these travel times into 5-min intervals to calculate and sum GPP for each. We felt
233	that a potential increase in accuracy of 10% for 6 of the rivers did not warrant this
234	increased model complexity. We did not include a diel temperature response for ER
235	because the relationship of ER to temperature is highly variable (Huryn and others 2014,
236	Jankowski and others 2014), and thus we would have needed to estimate this parameter
237	in addition to GPP, ER, and K, possibly producing an overfitted model. Gas exchange is
238	estimated as K_{600} (d ⁻¹) and is corrected for temperature at each time step based on
239	Schmidt number scaling (Jähne and Haußecker 1998). We convert this per time rate to a
240	gas exchange velocity (k_{600} , m/d) by multiplying by mean depth, z, to facilitate
241	comparisons with published gas exchange velocities. We used modeled solar insolation
242	data for Eq 3 based on geographic location and time of day and year.
243	For the 3 rivers using a one station method (North Platte, Bear, and Muskegon),
244	we used the following model (Van de Bogert and others 2007):
245	$O_t = O_{t-\Delta t} + \frac{GPP}{z} \times \frac{PPFD_t}{PPFD_{total}} + \frac{ER}{z} \Delta t + K\Delta t (Osat_{t-\Delta t} - O_{t-\Delta t}) $ (4)

247 where t is time of day and Δt is the time between O₂ measurements. This model measures O₂ change in one place rather than tracking it downstream and in a longitudinally 248 249 homogenous river, one-station analyses will give the similar results to a two-station 250 model (Reichert and others 2009). Of the 3 rivers, only the Muskegon had a dam located 251 47 km upstream, but we suggest that its influence was negligible because the dam was 252 located twice the distance (1.6V/K) for 80% of O₂ turnover (Chapra and Di Toro 1991). 253 Based on the above models, we used a Bayesian inverse modeling procedure to 254 estimate metabolism (GPP and ER) and gas exchange rate (K_{600}) roughly following 255 Holtgrieve and others (2010). Bayesian analysis treats parameters as random variables 256 with a corresponding probability distribution and allows estimating uncertainty for the 257 modeled parameters. Because we solved for gas exchange as well as GPP and ER, there 258 is the risk of overfitting the model, and posterior probability distributions solved via a 259 Bayesian approach allowed us to examine this assumption closely. At all but one sites we 260 had two full days of data, and we fit each daytime period separately starting at 22:00 the 261 night before to 06:00 the day after for a total of 32 h.

Following Bayes rule, we calculated the posterior probability distribution of the parameters as:

264

$$P(\theta \mid D) \propto P(D \mid \theta) \times P(\theta) \tag{5}$$

where θ is a vector of parameters, GPP, ER and K, and *D* is the O₂ data for the downstream or single station. The likelihood of the data given θ assumes normally distributed error and is calculated as:

268 $\mathcal{L}(D|\theta) = \prod_{i=1}^{n} N(D_i | \mu_i, \sigma_i^2)$ (6)

269	where the likelihood of D given θ is the product of likelihoods of the data relative to
270	modeled downstream O ₂ concentrations (μ_i ,) and variance (σ_i^2). We simulated the
271	posterior distribution $P(\theta D)$ using a Metropolis algorithm and Markov-chain Monte
272	Carlo (MCMC) using function <i>metrop</i> in the <i>mcmc</i> package for R (Geyer 2010, R
273	Development Core Team 2011). We ran each chain for 20,000 iterations following burn
274	in and we started all MCMC chains with different parameter values to ensure a global
275	solution. We did not thin chains and we adjusted the proposal distribution of the
276	Metropolis algorithm to achieve an acceptance rate near 20%. For metabolism
277	parameters, we used minimally informative prior probability distributions (GPP $\sim N$
278	(μ =5, sd=10), ER ~ N (μ =-5, sd=10). For gas exchange, we used the nighttime regression
279	method (Hornberger and Kelly 1975) or empirical equation 7 from Raymond and others
280	(2012) to assign a normal prior probability distribution, where the mean and standard
281	deviation of the prior probability distribution were the mean and standard deviation
282	respectively of the 4 slopes from nighttime regression measured by the two O ₂ sondes
283	over two nights or the error in the predictive equation. Code for one- and two-station
284	models is in Appendix 5.

286 Calculation of C spiraling

We calculated turnover length of OC for each river following (Newbold and others 1982) where spiraling length (S_{OC} , m) is the ratio of downstream transport relative to mineralization and is calculated as:

$$S_{OC} = \frac{Q \times [OC]}{-HR \times w} \tag{7}$$

292 Discharge (Q) and stream width (w) were estimated as described above, and the sum of POC and DOC gives the organic C concentration [OC]. However, to calculate S_{OC} 293 294 requires an estimate of heterotrophic respiration (HR, which is a negative flux) that 295 equals ER - AR, where AR is the respiration by algae and macrophytes themselves. 296 Typically researchers assume that AR is some fraction of GPP (e.g., 0.2 to 0.5) but a 297 recent analysis suggests that the daily fraction of GPP (AR_f) consumed by respiration by 298 algae is about 44% (Hall and Beaulieu 2013). Assuming this fraction, we estimated HR 299 as:

$$300 HR = ER - AR_f \times GPP$$

301 Turnover length of OC will depend strongly of the size of the river. To compare 302 mineralization relative to [OC] (i.e., [DOC] + [POC]) we calculated a "mineralization 303 velocity" (v_{f-OC} , m d⁻¹) of OC as:

(8)

$$304 \qquad \qquad \nu_{f-OC} = \frac{-HR}{[OC]} \tag{9}$$

305 analogous to uptake velocity measured in nutrient uptake studies (Hall and others 2013). We converted HR in O₂ units to g C m⁻² d⁻¹ by assuming a 1:1 molar relationship between 306 307 C and O in respiration and we then compared v_{f-OC} to those measured in other rivers and 308 streams where OC spiraling length was reported. Error in not perfectly knowing AR_f may 309 introduce error into estimates of v_{f-OC} . Therefore we calculated v_{f-OC} 1000 times with 310 each replicate using a randomly selected estimate of AR_f from Hall and Beaulieu (2013) 311 and 3 subsequent studies (Roley and others 2014, Genzoli and Hall in revision, R. O. 312 Hall et al, unpublished data). Finally, we compared Soc to the estimate of river length 313 estimated from GIS; we defined the segment distance for each river as the length of river 314 downstream of a major reservoir or confluence of large tributary and upstream of a lake,

reservoir, or much larger river. This designation of river length was not meant as a
definition, but rather to provide some context for considering OC turnover length, *Soc*.

317

318 Statistical inference

319 We used Pearson correlations to relate rates of metabolism to predictor variables, 320 and rates of C spiraling to river size. Inference on this correlation coefficient (r) was 321 based on calculating default Bayes factors for correlation (Wetzels and Wagenmakers 322 2012), which can be interpreted as the relative probability that a linear relation exists 323 between 2 variables. Bayes factors >6 constitute strong evidence in support of the 324 alternative hypothesis (linear relation) versus a null. We estimated error on metabolism 325 estimates, GPP, ER and K_{600} , not as the parameter error from the MCMC solutions, but 326 rather on the bootstrap 95% confidence intervals from the 2-8 metabolism estimates (i.e., 327 the median value of the posterior probability distributions) at each site. This approach 328 assumes no within-estimate error, which follows the fact that the among-estimate error 329 exceeded the parameter error from any one MCMC solution. We performed all statistics 330 using R (R Development Core Team 2011).

We compared rates of metabolism in this study to those from many other streams and rivers, collating estimates of reach-scale, open channel metabolism from Marcarelli and others (2011). We also added newer studies to this data set, of which several are from similar sized rivers as the ones studied here (Appendix 4). We used locally weighted regression (Trexler and Travis 1993) with a smoothing parameter of 0.75 to visualize trends in metabolism as a function of river discharge.

337

338 Results

339 Models fit the data closely and had low error in estimates of the parameters, GPP, 340 ER, and K (Fig 1). The 95% credible interval on metabolism parameters for any model 341 fit averaged < 10% of the of value of the parameter itself (Table 1). Variation in 342 parameter estimates between the two measurement days or among sondes was higher 343 than credible intervals within any one day (Table 1, Appendix 2). 344 GPP and ER varied strongly among the 14 rivers (Table 1, Fig 3); variation in GPP ranged from 0.6 to 22 g O_2 m⁻² d⁻¹, and encompassed much of the range of GPP 345 346 measured previously in small streams. However, for these rivers, unlike many smaller

347 streams, GPP and ER fell closer to the 1:1 line (Fig 3) suggesting that these 14 rivers had

348 low rates of HR relative to GPP. Neither turbidity nor nutrient concentrations correlated

349 with GPP or ER in any of the rivers (Appendix 3). Nearly all Pearson correlation

350 coefficients were < |-0.48|, with corresponding Bayes factor of < 0.9, which provided no

351 support for a linear relationship between the metabolism parameters and potential

352 covariates (Appendix 3). Two exceptions were benthic chlorophyll and total chlorophyll

353 which positively correlated with ER (r=0.76 and 0.78 respectively with Bayes factor >27

indicating strong evidence). Log transformed GPP and |ER| were strongly positively

355 correlated with each other (Fig 3, r=0.74, Bayes factor = 18.6).

River size affected variation in metabolic rates and GPP/|ER|. GPP and ER were highly variable, but peaked in mid-sized rivers (Fig 4). Estimates of heterotrophic respiration in our 14 rivers spanned a broad range, but were not as high as some streams with $<10 \text{ m}^3 \text{ s}^{-1}$ discharge. The ratio GPP/|ER| increased with increasing river size, and

360 large streams and rivers did not have low values of GPP/|ER|. For example, 50% of

361 rivers with Q < 10 m³ s⁻¹ had GPP/|ER| < 0.3. On the other hand, in rivers with Q > 10 362 m³ s⁻¹, only 14% had GPP/|ER| < 0.3.

Gas exchange (K_{600}) varied among the rivers (Table 1), with a mean of 5.7 d⁻¹ and 363 a range of 0.5 to 16 d⁻¹; gas exchange rates corresponded to a mean gas exchange velocity 364 (k_{600}) of 20.8 cm h⁻¹ with a range of 2 to 71 cm h⁻¹. Gas exchange rate was uncorrelated 365 366 with river depth, but river depth only varied two-fold among the 14 rivers. River slope 367 strongly predicted gas exchange velocity (Fig 2), and k_{600} fell closely to the prediction 368 estimate based on empirical equations used for many studies (Raymond and others 2012) 369 (Fig 2). The 1:1 prediction line explained 84% of the variation in these 14 rivers relative to the 76% R^2 in Raymond and others (2012). 370

371 Organic C spiraling lengths (S_{OC}) averaged 319 km and ranged from 38 to 1193 372 km, and S_{OC} lengths were generally similar to their respective river segment lengths; 373 median ratio of S_{OC} to segment length was 1.6 with a range of 0.2 to 4.7 (Table 2). Arid-374 land rivers with high suspended organic sediment loads and low HR (e.g., Green River at 375 two Utah sites, Colorado River, and Bear River, UT) had much longer S_{OC} than other rivers (Table 2). Mineralization velocities (v_{FOC}) for the 14 rivers averaged 0.37 m d⁻¹ and 376 ranged from 0.05 to 0.81 m d⁻¹ and when combined with previous studies, $v_{f,OC}$ correlated 377 378 positively with discharge (r = 0.50, Bayes factor = 127, strong evidence) (Fig 5). 379

380 Discussion

381 Gross primary production and ER varied strongly in our 14 rivers; this variation 382 corresponded to that of other previous measurements in similar-sized rivers. One river, 383 the Henry's Fork, ID had among the highest GPP ever measured for a stream or river.

384 Others, like the Bear River, UT had low rates of metabolism. The 4 rivers in the

385 Midwestern US had moderate rates of metabolism with low variation among them.

386 Despite evidence showing that GPP can increase as a function of stream or river size (Fig

4) (Finlay 2011), variation in metabolism among rivers was large enough that rivers haveno characteristic rate of metabolism.

389 Because we measured metabolism on only 2 days, during summer baseflow 390 conditions, we did not have a large within-river dataset to examine uncertainty on our 391 estimates. As such, we used a Bayesian method that allowed us to examine parameter 392 error within any one day (Holtgrieve and others 2010). This approach becomes necessary 393 when solving for gas exchange as well as metabolic parameters to avoid equifinality 394 among parameter estimates. In fact, we found low rates of parameter error. Variation 395 among sondes, or between the two measurement days, were higher than error estimated 396 via computational Bayesian approach on any one day, suggesting that these within-day 397 error estimates may not represent day-to-day error well.

398

GPP and ER 399

GPP ranged widely in our 14 rivers from among the highest rate ever measured (e.g., Henry's Fork) to low rates that were similar to those measured in small, forested streams. Despite this high variability, we were unable to statistically assess controls on variation of GPP among our 14 rivers. Time series of metabolism clearly show that turbidity can control rates of GPP in a river (Hall et al. 2015). We certainly expected that variation in turbidity would control GPP among rivers, but we found only weak

406 correlation between GPP and turbidity (Appendix 3), even though variation in turbidity407 was high, suggesting that some other processes were controlling variation.

408 We acknowledge that we only measured metabolism for two days; it is very likely 409 that antecedent conditions (e.g., time since last flood) may have controlled the rates of 410 GPP that we measured. Variation in the metabolism of one river can be as large as 411 variation among rivers, and a strong role for antecedent conditions has been noted 412 (Uehlinger 2006; Roberts and others 2007; Beaulieu and others 2013). One river, the 413 Muskegon, had an unexpected dam release, tripling discharge the day before our 414 metabolism estimates. This spate may have affected metabolism. 415 Despite these limitations, we can observe some anecdotal evidence for controls on 416 GPP; for example, the rivers with the two highest rates of GPP (Green River, WY and 417 Henry's Fork, ID) were located below water storage impoundments. Rivers below dams 418 typically have stable flow and low turbidity and can have high benthic algal biomass with 419 correspondingly high rates of GPP (Davis and others 2012). Henry's Fork also has 420 substantial inputs of groundwater-fed springs; high metabolism has been measured 421 previously in other spring streams (Odum 1957; Hall and others 2003; Heffernan and 422 Cohen 2010). In contrast, Buffalo Fork, WY drains mountain wilderness and is 423 oligotrophic, and had correspondingly low rates of metabolism. However, we emphasize 424 that we did not design the overall study to statistically tease out controls on river 425 metabolism, but rather to assess rates and variation of riverine nutrient uptake (J. L. Tank 426 and others, unpublished data). Statistically examining controls on metabolism would 427 have required many more rivers (Bernot and others 2010), or we would have selected all

rivers along a gradient of a predicted controlling variable, such as nutrient concentrations,in one region of the country.

430 GPP and ER were highly coupled in these 14 rivers (Fig 3), and unlike in some 431 streams, we did not find high riverine ER associated with low rates of GPP. This finding 432 suggests that despite an overall pattern of GPP/|ER| < 1, rivers may not have extremely 433 high rates of HR, at least during baseflow when they are not transporting large amounts 434 of terrestrial C and GPP is high. The relationship between GPP/|ER| as a function of river 435 discharge across the 14 rivers, combined with the full meta-analysis data set, supports 436 this conclusion with small streams having the potential for both low and high ratios of GPP/|ER|, whereas rivers > 10 m³ s⁻¹ had GPP/|ER| > 0.3 in 85% of the observations. 437 438 Higher rates of GPP in rivers have been previously noted in other meta-analyses of 439 stream metabolism, with the interesting twist that human perturbation has a stronger 440 effect on metabolism in small streams relative to rivers (Finlay 2011). Studies that 441 measure metabolism within a river network have found a similar pattern of increasing 442 GPP/[ER] with downstream position in the network (Meyer and Edwards 1990; 443 McTammany and others 2003); increasing GPP/[ER] with river size could be due to 444 increasing GPP, decreasing HR, or both. 445 Theory predicts that lower rates of HR should occur in downstream reaches

445 Theory predicts that lower rates of FRK should occur in downstream reaches
446 because most terrestrial (i.e., allochthonous) OC inputs are mineralized in the headwaters
447 (Webster 2007), yet HR peaks in middle river discharge (Fig. 4). Rather, rivers tended to
448 have high rates of ER, but do not have the negligible rates of GPP found frequently in
449 small, often shaded, headwater streams (Fig. 4). Alternatively, the pattern of somewhat
450 lower HR in larger rivers may be an artifact of the rivers and time chosen for metabolism

estimates. Rivers occupying a floodplain may have large spikes in HR during flooding
periods (Colangelo 2007; Dodds and others 2013), which are notably not included in the
14 estimates of river metabolism that we present here. In addition, as shown by Meyer
and Edwards (1990), rivers with large quantities of terrestrially-derived DOC may have
high rates of ER relative to GPP, though we note that they too found a pattern of
increasing GPP/|ER| with increasing stream order.

457 Many small streams had |ER|>>GPP; but we suggest that it is not possible to have 458 GPP>>|ER| because of a necessary upper limit to GPP/|ER|. For example, high rates of 459 GPP will result in higher ER because of the combination of associated respiration of the 460 autotrophs along with heterotrophic organisms contained in stream biofilms. The fraction 461 of GPP that is autotrophic respiration (AR) will determine this upper limit; given a mean 462 fraction of GPP respired each day (AR_f) of 0.44 (Hall and Beaulieu 2013), we calculate 463 that $GPP/|ER| = GPP/(GPP \times 0.44) = 2.2$. Thus we predict that the upper limit of 464 GPP/|ER| is 2.2 because, on average, 44% of GPP constitutes daily autotrophic 465 respiration. Indeed only 1.1 % of GPP/|ER| values exceeded 2.2, suggesting that this 466 value may represent an upper bound for autotrophy in rivers.

467

468 Gas exchange

The 14 rivers had variable gas exchange and river slope was the primary predictor of gas exchange velocity (k_{600} , Fig. 2); gas exchange was lowest in Bear River, UT which had gas exchange similar to a low-wind lake (Cole and Caraco 1998). Gas exchange was highest in the Henry's Fork, which at 71 cm h⁻¹ approached that of the steep, whitewater section of the Colorado through Grand Canyon (Hall and others 2012). The slope of the

474 regression line between river slope and k_{600} was lower for these 14 rivers than for 475 multiple measurements in the Colorado River in Grand Canyon (Hall et al. 2012), likely 476 due to the broad range of reaches through the Grand Canyon, ranging from nearly still to 477 extremely turbulent rapids. Our 14 rivers here did not display this within-river variation 478 in river morphology, even for the pool-drop section of the Green River in Gray Canyon. 479 Nevertheless, gas exchange predicted using empirical equations matched closely with our 480 data, even more closely than the original data used to derive these equations (Raymond and others 2012). 481

482 There is much interest in understanding gas exchange in rivers to estimate global 483 gas fluxes (Raymond and others 2013). With this study, we show that across a few 484 medium-sized continental rivers, gas exchange can vary widely. For the purposes of an 485 accurate metabolism estimate, it is necessary to estimate gas exchange for each river 486 because the log-log relationship in Fig. 2 has 2-fold prediction error. Optimistically, 487 with high GPP and low rates of O_2 turnover (K_{600}), it is possible to model gas exchange 488 using solely O₂ data, with no need to perform an experimental gas tracer addition (e.g., 489 SF_6) in these rivers. For the purposes of scaling gas exchange, where it is impractical to 490 empirically measure gas exchange for an entire river network, the method employed by 491 Raymond et al. (2012) is likely the best available for these medium-sized rivers in the 492 sense that it is unbiased (though with large prediction error) and captures much of the 493 variability in k_{600} .

494

495 *C* spiraling

496	Spiraling lengths for OC were generally long, but variable, in these 14 rivers. In 7
497	cases S_{OC} was shorter than the length of the river segment that we measured, suggesting
498	that there can be complete turnover of the OC pool along the length of some rivers.
499	Functionally, rivers with an S_{OC} roughly equal to segment length have turned over > 50%
500	of the OC pool in that length, although a caveat to this conclusion is that we evaluated
501	these rivers at baseflow discharge. High flows associated with storms or snowmelt would
502	assuredly result in much longer OC spiraling lengths because the OC flux would increase
503	more than any increase in organic matter processing (i.e., HR) during high flow periods.
504	Notably, the singular aspect of C cycling that most C spiraling studies (ours and others)
505	generally overlook is that most OC transport will occur during periods of high flow,
506	resulting in substantial intra-annual variation in S_{OC} (Meyer and Edwards 1990).
507	However, our analysis shows that, at least at baseflow, heterotrophic activity can drive
508	substantial mineralization of OC along a river's length. Given scaling relationships
509	between element spiraling length and river length, a constant v_{f-OC} means that spiraling
510	length increases less than proportionally with downstream distance from headwaters
511	(Hall and others 2013). We suggest that OC mineralization and subsequent turnover of
512	OC pools occurs to the same degree in larger streams and rivers as in the more well-
513	studied small streams.
514	It is important to note that although GPP/ ER is higher in rivers than headwaters,
515	it is clear that there is substantial processing of allochthonous C in rivers supported by the
516	high rates of HR across a range of stream and river sizes (Fig. 4). This point has also been

517 noted previously by Cole and Caraco (2001) for large rivers; these findings suggest that

518 rivers are important sites for the mineralization for OC. Alternatively this

519 "allochthonous" C fueling excess ER downstream could be C produced via

520 autochthonous production that is subsequently transported, and then mineralized, in

521 downstream river segments (Genzoli and Hall in revision).

522 From the perspective of C cycling, data from these 14 rivers combined with that 523 from the literature support that rivers are reactive ecosystems. With the current interest in 524 examining how freshwater ecosystems contribute to regional and global C budgets 525 (Battin and others 2008; 2009; Raymond and others 2013), we suggest that rivers may 526 strongly influence mineralization and fixation of new C in addition to their more obvious 527 role in the longitudinal transport of C. In fact at baseflow, mineralization and transport 528 are balanced such that OC can turn over completely in some river reaches. In rivers 529 without substantial groundwater inputs containing terrestrial sources of dissolved CO₂, 530 we may expect that net ecosystem production (NEP) for rivers will roughly equal CO_2 531 emissions, as has been found for the Hudson River (Cole and Caraco 2001). Metabolism 532 and C spiraling data from this study represent an approach to examine the 533 biogeochemical mechanisms controlling riverine C cycling, but only represent a snapshot 534 in time. In the future, we expect that time series of metabolism data will provide 535 estimates across a range of seasonal and hydrologic conditions, supporting a more 536 thorough understanding of the role of rivers in C cycling.

537

538 Acknowledgements

We heartily thank the River Gypsies, our trusty band of hard workers who helped
immensely in our field campaigns between 2010-2012: CD Baxter, HA Bechtold, K
Dahl, J Davis, LA Genzoli, MR Grace, SA Gregory, B Hanrahan, CF Johnson, D

542	Kincaid, U Mahl, MM Miller, JD Ostermiller, D Oviedo, JD Reed, AJ Reisinger, T
543	Royer, C Ruiz, E Salmon-Taylor, AL Saville, A Shogren, MR Schroer, MR Shupryt, and
544	IJ Washbourne. U Mahl and I Washbourne measured solute concentrations. S. Ye
545	calculated the lengths of rivers. RA Payn helped define the 2-station model. HL
546	Madinger analyzed argon concentrations. We thank DE Schindler and two anonymous
547	reviewers for comments greatly improving this paper. We also gratefully acknowledge a
548	collaborative grant from National Science Foundation that supported our research (DEB
549	09-21598, 09-22153, 09-22118, 10-07807).
550	
551	
552	References
553 554 555	 Battin T, Kaplan L, Findlay S, Hopkinson C, Marti E, Packman A, Newbold J, Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1:95–100.
556 557	Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nature Geoscience 2:598–600.
558	Beaulieu JJ, Arango CP, Balz DA, Shuster WD. 2013. Continuous monitoring reveals
559	multiple controls on ecosystem metabolism in a suburban stream. Freshwater
560	Biology 58:918–37.
561	Bernot MJ, Sobota DJ, Hall RO, Mulholland PJ, Dodds WK, Webster JR, Tank JL,
562	Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Grimm NB, Hamilton SK,
563	Johnson SL, McDowell WH, Meyer JL, Peterson BJ, Poole GC, Valett HM, Arango
564	CP, Beaulieu JJ, Burgin AJ, Crenshaw C, Helton AM, Johnson LT, Merriam J,
565	Niederlehner BR, O'Brien JM, Potter JD, Sheibley RW, Thomas SM, Wilson K.
566	2010. Inter-regional comparison of land-use effects on stream metabolism.
567	Freshwater Biology 55:1874–90.

568	Chapra SC, Di Toro DM. 1991. Delta method for estimating primary production,
569	respiration, and reaeration in streams. Journal of Environmental Engineering
570	117:640–55.
571	Colongelo DI 2007 Response of river metabolism to restoration of flow in the
571	Visiting a Discon Florida, USA, Freekowster Dislams 52:450, 70
572	Kissimmee River, Florida, USA. Freshwater Biology 52:459–70.
573	Cole JJ, Caraco NF. 1998. Atmospheric exchange of carbon dioxide in a low-wind
574	oligotrophic lake measured by the addition of SF ₆ . Limnology and Oceanography
575	43:647–56.
576	Cole JJ. Caraco NF. 2001. Carbon in catchments: connecting terrestrial carbon losses
577	with aquatic metabolism. Marine and Freshwater Research 52:101–10
511	with aquate metabolism. Marine and Preshwater Research 52.101 10.
578	Cross WF, Baxter CV, Rosi-Marshall EJ, Hall RO, Kennedy TA, Donner KC, Wellard
579	Kelly HA, Seegert SEZ, Behn KE, Yard MD. 2013. Food-web dynamics in a large
580	river discontinuum. Ecological Monographs 83:311–37.
581	Davis CJ, Fritsen CH, Wirthlin ED, Memmott JC. 2012. High rates of primary
582	productivity in a semi-arid tailwater: implications for self-regulated production. River
583	Research and Applications 28:1820–9.
584	Dodds WK, Veach AM, Ruffing CM, Larson DM. 2013. Abiotic controls and temporal
585	variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee
586	River data. Freshwater Science 32:1073–87.
587	Finlay J. 2011. Stream size and human influences on ecosystem production in river
588	networks. Ecosphere 2:87.
589	Griffiths NA, Tank JL, Royer TV, Warrner TJ, Frauendorf TC, Rosi-Marshall EJ, Whiles
590	MR. 2012. Temporal variation in organic carbon spiraling in Midwestern agricultural
591	streams. Biogeochemistry 108:149–69.
	J J
592	Genzoli LA, Hall RO. In revision. Shifts in Klamath River metabolism following a
593	reservoir cyanobacterial bloom. Freshwater Science.

- Hall RO, Baker MA, Rosi-Marshall EJ, Tank JL. 2013. Solute specific scaling of
- inorganic nitrogen and phosphorus uptake in streams. Biogeosciences 10:7323–31.
- Hall RO, Beaulieu JJ. 2013. Estimating autotrophic respiration in streams using daily
 metabolism data. Freshwater Science 32:507–16.
- Hall RO, Kennedy TA, Rosi-Marshall EJ. 2012. Air-water oxygen exchange in a large
 whitewater river. Limnology and Oceanography: Fluids and Environments 2:1–11.
- Hall RO, Tank JL, Dybdahl M. 2003. Exotic snails dominate nitrogen and carbon cycling
 in a highly productive stream. Frontiers in Ecology and the Environment 1:407–11.
- 602 Hall RO, Yackulic CB, Kennedy TA, Yard MD, Rosi-Marshall EJ, Voichick N, and

Behn KE. 2015. Turbidity, light, temperature, and hydropeaking control daily

variation in primary production in the Colorado River, Grand Canyon. Limnologyand Oceanography 60: 512-26.

- Heffernan JB, Cohen MJ. 2010. Direct and indirect coupling of primary production and
 diel nitrate dynamics in a subtropical spring-fed river. Limnology and Oceanography
 55:677–88.
- Holtgrieve GW, Schindler DE, Branch TA. 2010. Simultaneous quantification of aquatic
 ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen
 dynamics. Limnology and Oceanography 55:1047–63.
- Hornberger GM, Kelly MG. 1975. Atmospheric reaeration in a river using productivity
 analysis. Journal of the Environmental Engineering Division 101:729–39.

Huryn AD, Benstead JP, Parker SM. 2014. Seasonal changes in light availability modify
the temperature dependence of ecosystem metabolism in an arctic stream. Ecology
95: 2826-2839.

Jähne B, Haußecker H. 1998. Air-water gas exchange. Annual Review of Fluid
Mechanics 30:443–68.

619	Jankowski K, Schindler DE, Lisi PJ. 2014. Temperature sensitivity of community
620	respiration rates in streams is associated with watershed geomorphic features.
621	Ecology 95:2707–14.
622	Marcarelli AM, Baxter CV, Mineau MM, Hall RO. 2011. Quantity and quality: unifying
623	food web and ecosystem perspectives on the role of resource subsidies in freshwaters.
624	Ecology 92:1215–25.
625	McTammany ME, Webster JR, Benfield EF, Neatrour MA. 2003. Longitudinal patterns
626	of metabolism in a southern Appalachian river. Journal of the North American
627	Benthological Society 22:359–70.
628	Meyer JL, Edwards RT. 1990. Ecosystem metabolism and turnover of organic carbon
629	along a blackwater river continuum. Ecology 71:668–77.
630	Newbold JD, Mulholland PJ, Elwood JW, O'Neill RV. 1982. Organic carbon spiralling in
631	stream ecosystems. Oikos 38:266–72.
632	Odum HT. 1957. Trophic structure and productivity of Silver Springs, Florida.
633	Ecological Monographs 27:55–112.
634	R Development Core Team. 2011. R: A language and environment for statistical
635	computing. Vienna: R Foundation for Statistical Computing http://www.R-
636	project.org/
637	Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald CP, Hoover M, Butman D,
638	Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Cais P, Guth
639	P. 2013. Global carbon dioxide emissions from inland waters. Nature 503:355–9.
640	Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE,
641	McDowell WH, Newbold D. 2012. Scaling the gas transfer velocity and hydraulic
642	geometry in streams and small rivers. Limnology and Oceanography: Fluids and
643	Environments 2:41–53.
644	Reichert P, Uehlinger U, Acuña V. 2009. Estimating stream metabolism from oxygen

- 645 concentrations: Effect of spatial heterogeneity. Journal of Geophysical Research646 Biogeosciences 114:G03016.
- Roberts BJ, Mulholland PJ, Hill WR. 2007. Multiple scales of temporal variability in
 ecosystem metabolism rates: results from 2 years of continuous monitoring in a
 forested headwater stream. Ecosystems 10:588–606.
- Roley, SS, Tank JL, Griffiths NA, Hall RO, Davis RT. 2014. The influence of floodplain
 restoration on whole-stream metabolism in an agricultural stream: insights from a
 5-year continuous dataset. Freshwater Science 33:1043-1059.
- Staehr PA, Baastrup-Spohr L, Sand-Jensen K, Stedmon C. 2012. Lake metabolism scales
 with lake morphometry and catchment conditions. Aquatic Sciences 74:155–69.
- Taylor BW, Flecker AS, Hall RO. 2006. Loss of a harvested fish species disrupts carbon
 flow in a diverse tropical river. Science 313:833–6.
- Thomas S, Royer T, Snyder E, Davis J. 2005. Organic carbon spiraling in an Idaho river.
 Aquatic Sciences 67:424–33.
- Thorp JH, Delong MD. 2002. Dominance of autochthonous autotrophic carbon in food
 webs of heterotrophic rivers. Oikos 96:543–50.
- Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P,
- Finlay K, Fortino K, Knoll LB. 2009. Lakes and reservoirs as regulators of carbon
 cycling and climate. Limnology and Oceanography 54:2298–314.
- 664 Trexler JC, Travis J. 1993. Nontraditional regression analyses. Ecology:1629–37.
- 665 Uehlinger U. 2006. Annual cycle and inter-annual variability of gross primary production
- and ecosystem respiration in a floodprone river during a 15-year period. Freshwater
- 667 Biology 51:938–50.
- Van de Bogert MC, Carpenter SR, Cole JJ, Pace ML. 2007. Assessing pelagic and
- benthic metabolism using free water measurements. Limnology and Oceanography:
- 670 Methods 5:145–55.

671	Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river
672	continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-7.
673	Webster JR. 2007. Spiraling down the river continuum: stream ecology and the U-shaped
674	curve. Journal of the North American Benthological Society 26:375-89.
675	Wetzels R, Wagenmakers E-J. 2012. A default Bayesian hypothesis test for correlations
676	and partial correlations. Psychonomic Bulletin and Review 19:1057-64.

${ m K_{600}}$	d-1	8.7 (8.5, 8.9)	8.3 (6.5, 10.0)	15.6 (13.9, 17.3)	7.0 (7.0, 7.0)	15.2 (14.2, 16.4)	2.1 (2.0, 2.3)	1.7 (1.6, 1.8)	3.0 (3.0, 3.1)	2.0 (1.9, 2.1)	4.4 (4.0, 4.9)	0.5 (-0.5,1.6)	2.1(1.7, 2.6)	2.1 (2.0, 2.2)	6.3 (6.2, 6.5)
ER	$g O_2 m^{-2} d^{-1}$	-3.4 (-3.5, -3.3)	-17.5 (-20.0, - 15.0)	-18.1 (-20.2, - 15.9)	5.1 (-5.6, - 4.7)	-5.1, (-5.8, -4.7)	-5.3 (-5.4, -5.2)	-5.6 (-5.6,-5.5)	-4.8 (-4.8, -4.7)	-4.4 (-4.6, -4.2)	-6.8 (-7.6, -6.1)	-1.1, (-1.6, -0.7)	-1.2, (-1.5, -1.0)	-3.0 (-3.1, -2.9)	-2.7 (-3.3, -2.2)
GPP	$g O_2 m^{-2} d^{-1}$	$0.8\ (0.7, 0.8)$	19.9 (18.3, 21.5)	22.1 (20.6, 23.6)	3.0 (2.9,3.1)	4.0 (3.9,4.2)	2.6 (2.5, 2.7)	4.7 (4.4, 5.0)	3.0 (3.0, 3.0)	3.9 (3.5,4.2)	4.0 (3.7,4.5)	1.1(1.0.1.3)	1.1 (1.1,1.2)	0.3 (0.2, 0.5)	4.5 (4.3, 4.8)
Turbidity	fnu	3	3		0	2	17	43	23	3	19	53	16	607	116
SRP	$\mu_{\rm g} { m P} \ { m L}^{-1}$	44	21	16	L	4	67	60	6	10	20	18	3	22	12
NO_3^{-1}	$\mu_{\rm g N}^{\rm g N}$	3	15	9	pq	5	1850	1650	330	120	20	49	L	19	697
$\mathrm{NH_4^+}$	$\mu_{\rm L}^{\rm g}{ m N}$	5	Ś	ю	Ś	Ś	15	1	14	30	5	12	2	14	1
Mean depth	ш	0.58	0.76	1.09	1.04	0.52	0.59	0.82	1.05	1.25	1.05	0.97	0.64	1.34	1.33
Velocity	m min ⁻¹	55.8	32.4	61.7	63.4	59.2	37.9	21.4	28.3	33.4	58.9	26.6	31.6	23.2	34.3
Width	ш	35.2	62.5	62.0	65.3	50.5	50.6	47.9	67.0	52.5	81.3	37.3	111.8	79.1	83.1
Discharge	m ³ s ⁻¹	19.1	25.5	9.69	71.7	25.9	19.0	14.0	33.0	36.5	83.9	16.0	37.9	41.0	63.4
River		Buffalo Fork	Green River, WY	Henry's Fork	Snake River	Salmon River	Tippecanoe River	East Fork, White River	Muskegon River	Manistee River	North Platte River	Bear River	Green River at Ouray	Green River at Gray Canyon	Colorado River

Table 1. Physical and chemical properties and metabolism of the 14 rivers in this study. Values in parentheses represent 95% 678

bootstrap confidence intervals for metabolism based on 2 to 8 metabolism estimates at each site. 679

684 lakes. v_{fOC} is the OC mineralization velocity.

					Segment	
River	DOC	POC	HR	S_{OC}	length	v_{foc}
Ι	g m ⁻³	g m ⁻³	${\rm g} \> {\rm C} \> {\rm m}^{-2} \> {\rm d}^{-1}$	(km)	(km)	m d ⁻¹
Buffalo Fork	2.87	0.43	1.2	134 (123, 143)	44	0.351
Green River, WY	3.64	0.39	3.3	43 (25, 112)	103	0.812
Henry's Fork	2.91	1.06	3.1	123 (66, 433)	120	0.787
Snake River	2.53	0.46	1.4	200 (159, 254)	136	0.473
Salmon River	3.03	0.41	1.2	123 (88, 183)	184	0.360
Tippecanoe River	4.32	0.69	1.6	104 (87, 125)	173	0.310
East Fork, White River	1.53	0.43	1.3	38 (27, 59)	246	0.672
Muskegon River	4.9	0.07	1.3	164 (127, 215)	235	0.259
Manistee River	1.74	0.10	1.0	108 (74, 177)	169	0.553
North Platte River	5.27	0.08	1.9	251 (199, 321)	217	0.354
Bear River	4.08	1.08	0.2	814 (508, 1605)	323	0.045
Green River at Ouray	3.09	0.98	0.3	422 (283, 709)	542	0.069
Green River at Gray Canyon	3.48	14.52	1.1	748 (719, 773)	542	090.0
Colorado River	2.98	2.17	0.3	1194 (403, inf)	264	0.055

685 Figure legends

686	Figure 1. Data (thick gray lines) and model fit (thin black line) for 1
687	representative example of the 2 to 8 metabolism model fits for each of the 14 rivers.
688	Each model fitting procedure was based on one day's worth of oxygen data. Y axis units
689	are % O ₂ saturation to facilitate comparison among rivers.
690	Figure 2. Panel A. Gas exchange velocity from O_2 metabolism model (k_{600} , cm h ⁻
691	¹) increased as a function of river slope (%). Line is linear regression, $log_{10}(k_{600}) = 2.07 +$
692	$0.79 \times \log_{10}(slope), r^2 = 0.89$. Panel B. Modeled gas exchange velocity lies to close to
693	that predicted by model # 7 in (Raymond and others 2012). Line is 1:1.
694	Figure 3. Gross primary production (GPP) versus ecosystem respiration (ER) for
695	our 14 rivers (black points) and other data (gray circles) show high variation among
696	studies. Line is GPP = ER. Axes are log scaled.
697	Figure 4. Gross primary production (GPP, Panel A), Ecosystem respiration (ER ,
698	Panel B), and GPP / $ ER $ (Panel C) as a function of river discharge. Black points are the
699	14 rivers from this study grav are other data. Axes are log scaled Lines are locally
	1 million mont this study, gruf are other data. Thiss are registrated. Entes are rotarif
700	weighted regression with smoothing factor = 0.75 , The point far to the right is from the
700 701	weighted regression with smoothing factor = 0.75 , The point far to the right is from the Mississippi river and represents the largest possible size for a North American river
700 701 702	weighted regression with smoothing factor = 0.75, The point far to the right is from the Mississippi river and represents the largest possible size for a North American river (Dodds and others 2013). Because of the zero density in points between the Mississippi
700701702703	weighted regression with smoothing factor = 0.75, The point far to the right is from the Mississippi river and represents the largest possible size for a North American river (Dodds and others 2013). Because of the zero density in points between the Mississippi River and the second largest river in the data set, we did not fit the regression line to the
 700 701 702 703 704 	weighted regression with smoothing factor = 0.75, The point far to the right is from the Mississippi river and represents the largest possible size for a North American river (Dodds and others 2013). Because of the zero density in points between the Mississippi River and the second largest river in the data set, we did not fit the regression line to the Mississippi River.
 700 701 702 703 704 705 	weighted regression with smoothing factor = 0.75, The point far to the right is from the Mississippi river and represents the largest possible size for a North American river (Dodds and others 2013). Because of the zero density in points between the Mississippi River and the second largest river in the data set, we did not fit the regression line to the Mississippi River. Figure 5. Mineralization velocity of organic carbon (v_{f-OC}) was positively
 700 701 702 703 704 705 706 	weighted regression with smoothing factor = 0.75, The point far to the right is from the Mississippi river and represents the largest possible size for a North American river (Dodds and others 2013). Because of the zero density in points between the Mississippi River and the second largest river in the data set, we did not fit the regression line to the Mississippi River. Figure 5. Mineralization velocity of organic carbon (v_{f-OC}) was positively correlated with discharge. Gray points are data from other studies, black points are 13

708	bootstrap of heter	otrophic res	piration (H	HR) from	Hall and I	Beaulieu (2013).	This error
	1	1	1	/				

- represents uncertainty in HR estimates. Pearson correlation (r=0.5) and Bayes factor
- (127) support strong evidence for a positive relationship.

- 721

726 Fig. 1

Fig 4

			Reach				Mean			
River	latitude	longitude	length	Discharge	Width	Velocity	depth	slope	temp	k_{600}
			km	$m^3 s^{-1}$	ш	m min ⁻¹	m	m/m	°C	$\mathrm{cm}\ \mathrm{h}^{\mathrm{-l}}$
Buffalo Fork	43° 50' 57.775" N	110° 19' 39.240" W	10.74	19.1	35.2	55.8	0.58	0.0016	12.0	21.2
Green River, WY	41° 57' 58.508" N	109° 58' 24.282" W	4.34	25.5	62.5	32.4	0.76	0.0011	18.7	26.1
Henry's Fork	44° 6' 14.008" N	111° 20' 55.190" W	8.86	9.69	62.0	61.7	1.09	0.0033	18.6	71.0
Snake River	43° 49' 40.163" N	110° 131' 49.238" W	7.96	71.7	65.3	63.4	1.04	0.0013	16.3	30.3
Salmon River	44° 16' 58.211" N	11° 19' 36.731" W	9.72	25.9	50.5	59.2	0.52	0.0034	16.1	32.9
Tippecanoe River	41° 1' 25.971" N	86° 35' 5.982" W	4.86	19.0	50.6	37.9	0.59	0.0002	26.2	5.2
East Fork, White River	39° 10' 0.043" N	85° 54' 40.264" W	7.41	14.0	47.9	21.4	0.82	0.0003	28.2	5.8
Muskegon River	43° 20' 48.584" N	85° 56' 25.359" W	5.01	33.0	67.0	28.3	1.05	0.0004	24.9	13.1
Manistee River	44° 16' 3.389" N	86° 0' 57.689" W	5.07	36.5	52.5	33.4	1.25	0.0003	22.6	10.4
North Platte River	42° 45' 46.750" N	105° 23' 41.987" W	8.15	83.9	81.3	58.9	1.05	0.0012	23.1	19.3
Bear River	41° 58' 30.905" N	111° 56' 13.003" W	2.50	16.0	37.3	26.6	0.97	0.0001	23.6	2.0
Green River at Ouray Green River at Gray	40° 10' 56.773" N	109° 35' 44.690" W	3.97	37.9	111.8	31.6	0.64	0.0003	23.6	5.6
Canyon	39° 11' 47.847" N	110° 4' 38.751" W	5.25	41.0	79.1	23.2	1.34	0.0011	25.1	11.7
Colorado River	38° 48' 45.218" N	109° 18' 29.116" W	5.15	63.4	83.1	34.3	1.33	0.0016	25.1	35.0

_:
data
/sical
r phy
Rive
1.
ppendix

Appendix 2. Error estimates for metabolism parameters

Appendix 2, Figure 1. GPP for 2 to 8 estimates in each of the rivers. Points are median estimate of the posterior probability distribution of the GPP parameter. Line symbols are the 2.5% and 97.5% quantiles of the posterior probability distribution.

Appendix 2, Figure 2. Ecosystem respiration (ER) for 2 to 8 estimates in each of the rivers. Points are median estimate of the posterior probability distribution of the ER parameter. Line symbols are the 2.5% and 97.5% quantiles of the posterior probability distribution.

Appendix 2, Figure 3. Gas exchange (K_{600}, d^{-1}) for 2 to 8 estimates in each of the rivers. Points are median estimate of the posterior probability distribution of the K_{600} parameter. Line symbols are the 2.5% and 97.5% quantiles of the posterior probability distribution.

Appendix 3. Pearson correlation coefficients (r) between nutrient concentrations, turbidity and metabolism (gpp= gross primary production, er = |ecosystem respiration|). All data except temperature were ln transformed. Bold indicate correlations with strong evidence for a linear relationship (r > 0.72 corresponding to Bayes Factor >10 with n=14) GPP and |ER| were positively correlated with Bayes factor = 18.6, showing strong evidence for a linear relationship. The only other variable to correlate with metabolism was benchic and total chlorophyll standing stocks.

	er	no3	nh4	srp	turbidity	DOC	pelagic chla	benthic chla	total chla	temp	width
gpp	0.79	0.07	-0.28	-0.02	-0.50	-0.12	-0.02	0.48	0.53	-0.10	-0.07
er		-0.08	-0.05	0.25	-0.48	-0.03	-0.17	0.76	0.74	-0.26	-0.17
no3			-0.01	0.50	0.56	-0.05	0.83	0.24	0.32	0.81	-0.11
nh4				0.04	-0.04	0.30	-0.11	0.21	0.21	-0.02	-0.32
srp					0.27	-0.02	0.44	0.36	0.27	0.21	-0.52
turbidity						0.24	0.71	-0.15	-0.10	0.75	0.28
DOC							-0.05	0.05	0.15	0.05	0.21
pelagic chla								0.00	0.08	0.89	0.08
benthic chla									0.95	-0.09	-0.38
total chla										0.02	-0.29
temp											0.30

Units for this table:

gpp and er (g $O_2 \text{ m}^{-2} \text{ d}^{-1}$), no3 and nh4 (µg N L⁻¹), srp (µg P L⁻¹), turbidity (FNU), DOC (mg C L⁻¹), chla (mg chlorophyll *a* m⁻²), temp (°C)

Appendix 4. Metabolism data used in meta-analysis. Units are g $O_2 m^{-2} d^{-1}$ for GPP and ER. Q is discharge in L s⁻¹. Table is .csv file.

Appendix 5. R code used to estimate 2 station metabolism via a Bayesian framework.