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Abstract 47 

Ecosystem metabolism, i.e., gross primary productivity (GPP) and ecosystem respiration 48 

(ER), controls organic carbon (OC) cycling in stream and river networks and is expected 49 

to vary predictably with network position. However, estimates of metabolism in small 50 

streams outnumber those from rivers such that there are limited empirical data comparing 51 

metabolism across a range of stream and river sizes. We measured metabolism in 14 52 

rivers (discharge range 14 to 84 m3 s-1) in the Western and Midwestern United States 53 

(US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station 54 

oxygen model solved in a Bayesian framework. GPP ranged from 0.6 to 22 g O2 m-2 d-1 55 

and ER tracked GPP, suggesting that autotrophic production supports much of riverine 56 

ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or 57 

greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas 58 

exchange estimates from these 14 rivers in agreement with empirical models. Carbon 59 

turnover lengths (i.e., the distance traveled before OC is mineralized to CO2) ranged from 60 

38-1190 km, with longest turnover lengths in high-sediment, arid-land rivers.  We also 61 

compared estimated turnover lengths with the relative length of the river segment 62 

between major tributaries or lakes; the mean ratio of carbon turnover length to river 63 

length was 1.6, demonstrating that rivers can mineralize much of the OC load along their 64 

length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d-1, and 65 

were not different than measurements from small streams.  Given high GPP relative to 66 

ER, combined with generally short OC spiraling lengths, rivers can be highly reactive 67 

with regard to OC cycling. 68 
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 71 

Introduction 72 

There is a renewed interest in carbon cycling in freshwater ecosystems as 73 

ecologists link metabolic processes with regional carbon (C) budgets (Battin and others 74 

2009; Tranvik and others 2009), but empirical measurements of metabolism in a wide 75 

variety of freshwater ecosystems are lacking, as is our understanding of processes that 76 

control variation within and across ecosystems.  Ecosystem size and position in the 77 

landscape will control variation in rates of C supply and in situ metabolism; for example, 78 

lake size correlates with metabolism (Staehr and others 2012).  In the case of streams and 79 

rivers, ecosystem processes such as C cycling will vary both as a function of size (as 80 

volumetric flow) and landscape position, given that the downstream movement of water 81 

connects headwaters with larger streams and rivers (Webster 2007).  The effects of stream 82 

size and landscape position on C cycling were initially conceptualized as part of the River 83 

Continuum Concept (RCC) where headwater streams were predicted to have high rates of 84 

ecosystem respiration (ER) relative to gross primary production (GPP), whereas mid-order 85 

reaches were predicted to have higher GPP relative to ER because of increased light 86 

availability supporting autochthony combined with reduced allochthonous inputs of C 87 

(Vannote and others 1980).  In contrast, large rivers with high sediment loads would revert 88 

to a pattern of higher ER relative to GPP, like headwater streams, because of decreased 89 

light penetration in the water column combined with the import of allochthonous particles 90 

from upstream.  Data from selected river continua have supported the pattern of increasing 91 
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GPP/ER downstream from headwaters to non-wadeable rivers (Meyer and Edwards 1990; 92 

McTammany and others 2003). 93 

Despite strong conceptual foundations and limited empirical data on how larger 94 

streams and rivers function, metabolism estimates in rivers are far fewer in number than 95 

those from small streams.  Only 10% of reach-scale metabolism estimates (reviewed 96 

below) have been conducted in rivers with discharge >10 m3 s-1 (~20 m width), while > 97 

50% have been made in streams < 0.1 m3 s-1.  Recent advances for estimating gas 98 

exchange from dissolved oxygen (O2) data (Holtgrieve and others 2010; Dodds and 99 

others 2013) make estimating metabolism in rivers potentially as straightforward as in 100 

small streams. In addition, understanding variation and controls on metabolism in rivers 101 

will allow ecologists to answer a variety of unanswered questions in river networks. For 102 

example, river food webs are based to a large degree on in situ primary production 103 

(Thorp and Delong 2002; Cross and others 2013), but there are few data on the actual 104 

rates of primary production in rivers.  105 

More broadly, ecosystem metabolism in rivers is of general interest because of the 106 

potential for rivers to store, mineralize, and transport terrestrial organic carbon (OC) 107 

before reaching the coastal zone (Battin and others 2008; Raymond and others 2013). It is 108 

well known that small streams can respire large quantities of terrestrial OC (Marcarelli 109 

and others 2011), yet the role of rivers is less understood, despite evidence showing that 110 

big rivers also transform terrestrial OC (Cole and Caraco 2001). Riverine metabolism 111 

estimates will also facilitate the calculation of OC spiraling lengths (Newbold and others 112 

1982), allowing further comparison among small streams and larger rivers.  The OC 113 

spiraling method examines downstream C flux relative to mineralization and is a direct 114 
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estimate of the degree to which rivers mineralize versus transport OC.  Oddly, ecosystem 115 

ecologists rarely use this spiraling metric to describe the role of streams and rivers in C 116 

cycling despite strong theoretical (Webster 2007) and empirical (Thomas and others 117 

2005; Taylor and others 2006; Griffiths and others 2012) examples. 118 

Here, we measured metabolism of 14 rivers ranging in size from 14 to 84 m-3 s-1 119 

to link metabolism metrics with OC cycling. We had 3 objectives: 1) develop a two-120 

station model, solved via Bayesian inverse modeling of metabolism parameters, to 121 

measure metabolism in each of 14 rivers varying in physical attributes in Midwest and 122 

Western US; 2) combine riverine metabolism values with others from the literature to 123 

examine how the balance of GPP and ER varies across a large size range of streams and 124 

rivers; and 3) calculate instantaneous metrics of OC spiraling to estimate the degree to 125 

which river reaches can process OC. 126 

 127 

Methods 128 

Study sites 129 

We chose 14 rivers in the Midwest and Western US that varied chemically, 130 

physically, and geomorphically (Table 1, Appendix 1).  This study was part of a larger 131 

study investigating nutrient cycling in rivers, thus we chose sites to maximize variation in 132 

suspended sediment and nutrient concentrations.  Sites in western Wyoming and eastern 133 

Idaho had low nutrient and low suspended sediment concentrations, central Wyoming 134 

and Utah rivers had low to medium nutrient concentrations and medium to high 135 

suspended sediments, and Midwestern rivers had generally higher nutrients and low to 136 

medium suspended sediments (Table 1). We chose the study reaches by taking in to 137 
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consideration the proximity of bridges for adding solutes, the presence of USGS gages 138 

for measurements of discharge, and the presence of boat ramps for reach-scale sampling 139 

logistics.  Rivers varied in summer baseflow discharge from 14 to 84 m3 s-1 with an 140 

average of 39 m3 s-1.  141 

 142 

Field and laboratory methods   143 

At most sites we performed two-station metabolism estimates based on sampling 144 

dissolved O2 through time.  To measure dissolved O2 we anchored 2-4 multi-parameter 145 

Hydrolab Minisondes equipped with optical O2 sensors in areas of moderate downstream 146 

flow, at stations 2.5-10.7 km apart (mean 6.1 km) along each river, with mean distance 147 

between sondes corresponding to an average of 2.7 h of travel time.  We calibrated the 148 

sondes river-side in a 100-L pot of air-saturated water that we vigorously bubbled using 149 

an aquaculture air pump and air stone. This method of bubbling oversaturates O2 by 2%. 150 

Bubbling this pot in the laboratory and measuring Ar (which has similar diffusivity as O2) 151 

on a membrane-inlet mass spectrometer, we found that Ar was 2% (±0.15%)  152 

oversaturated.  This phenomenon is likely due to oversaturation due to bubble-mediated 153 

gas exchange (e.g., Hall et al. 2012).   We corrected our oxygen data downwards by 2% 154 

to counter this over calibration.  Following initial calibration, we recorded O2 readings in 155 

this air saturated water to check calibration and that all sondes remained within 2% of 156 

saturation; O2 readings from sondes drifted little during the deployments and thus did not 157 

need drift correction.  We recorded O2, temperature, and turbidity using these sondes at 158 

5-min intervals during 3-d deployments during summer baseflow conditions (i.e., July or 159 

August).  160 
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We also collected physical and chemical data at each site; discharge (Q, m3 s-1) 161 

came from nearby USGS gaging stations or gages associated with upstream dams.  We 162 

measured wetted channel width (w, m) of the reach at ~70 locations throughout the study 163 

reach using a laser rangefinder operated from a boat. We also conducted solute tracer 164 

additions as part of nutrient uptake experiments, adding Rhodamine WT (RWT) and 165 

NaBr in separate pulse additions with target downstream concentrations of 10 µg RWT L-166 

1 or 50 µg Br- L-1. We monitored RWT at 4 stations downstream of the release point 167 

using 4 Hydrolab Minisondes equipped with fluorometric sensors programmed to record 168 

RWT concentration every 10 seconds while Br- samples were manually collected from 169 

the river thalweg at timed intervals and analyzed using ion chromatography (Dionex 170 

models ICS-5000) using US-EPA standard method 300.0. These tracer releases were 171 

used to calculate nominal travel time (i.e., the time for 50% of the solute to pass the 172 

downstream station), and mean velocity (V, m min-1) was then calculated as reach 173 

length/nominal travel time, while mean depth (z, m) was estimated based on continuity, z 174 

= Q/(wV).  We also measured background water column nutrients at each site as part of 175 

the nutrient uptake experiments and reach-scale estimates were based on the average of 3 176 

to 5 samples collected at 4 sites. We analyzed NH4
+-N using the phenol-hypochlorite 177 

method (Solorzano 1969), NO3
--N using the cadmium reduction method (APHA 1995) 178 

and SRP using the ascorbic acid method (Murphy and Riley 1962) on a Lachat Flow 179 

Injection Autoanalyzer (Lachat Instruments, Loveland, CO, USA).  180 

To estimate C spiraling, we sampled particulate OC (POC) and dissolved OC 181 

(DOC).  We collected POC from 3 grab samples taken in the thalweg at 4 locations from 182 

each river. Rivers averaged 0.6 to 1.3 m deep and were turbulent; hence, we did not take 183 
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depth-integrated samples.   For POC, we immediately filtered a known volume of water 184 

in the field onto pre-ashed and weighed glass fiber filters (Whatman GF/F), air died the 185 

filters and stored them for transport to the lab where we dried them at 60°C, weighed 186 

them, and combusted at 500°C. We reweighed the filters to obtain an ash-free dry mass 187 

(AFDM) and converted to mg AFDM/L given the volume of sample filtered; we assumed 188 

that 50% 0f AFDM was C. Samples for DOC came from triplicate samples at one 189 

location.  These were filtered with pre-ashed glass fiber filters (Whatman GF/F), acidified 190 

with HCl to a pH of 2, and then stored in acid washed and ashed borosilicate amber vials 191 

(I-Chem, 40mL). We transported samples on ice to the laboratory, and refrigerated them 192 

until analysis on a Shimadzu Total Organic Carbon Analyzer (TOC-5000A; measurement 193 

precision of ± 0.05 mg C L-1). 194 

 195 

Metabolism estimation 196 

We estimated metabolism and gas exchange by fitting a two-station Lagrangian 197 

model to the dissolved O2 data, except for the Muskegon, North Platte, and Bear rivers 198 

where we used a one-station method due to instrument failures or burial of the upstream 199 

sondes.  A two-station procedure measures metabolism in a defined reach of river 200 

between the upstream and downstream O2 sensors, which allows estimation of reach-201 

scale metabolism, even below river discontinuities, such as dams, which may be included 202 

in the upstream footprint of one-station O2 measurements.  A general model for two-203 

station metabolism is: 204 

𝑂𝑑𝑜𝑤𝑛(!!!) = 𝑂𝑢𝑝(!) +   𝐺𝑃𝑃 + 𝐸𝑅 +   𝑔𝑎𝑠  𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒   205 

 (1) 206 
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where Oup(t) is the upstream O2 concentration (g O2 m-3) and  Odown(t+τ) is downstream 207 

O2 concentration of that same parcel of water following travel time, τ.  GPP and ER are 208 

both expressed in g O2 m-2 d-1, and represented as positive and negative rates of O2 209 

production and consumption, respectively.  210 

An expansion of this model is: 211 

𝑂𝑑𝑜𝑤𝑛 !!! = 𝑂𝑢𝑝 ! +
𝐺𝑃𝑃
𝑧 ×

𝑃𝑃𝐹𝐷!!!
!

𝑃𝑃𝐹𝐷!"!!"
+
𝐸𝑅
𝑧 𝜏 

+  𝐾𝜏
𝑂𝑠𝑎𝑡𝑢𝑝 ! + 𝑂𝑠𝑎𝑡𝑑𝑜𝑤𝑛 !!!

2 −
𝑂𝑢𝑝 ! + 𝑂𝑑𝑜𝑤𝑛 !!!

2  

(2) 212 

where z is mean depth (m), Osatup and Osatdown are O2 saturation concentrations 213 

upstream and downstream (g O2 m-3).  Gas exchange flux was the gas exchange rate, K 214 

(d-1) multiplied by the dissolved O2 saturation deficit, which we averaged for the 215 

upstream and downstream stations. We use light to drive GPP in this model (Van de 216 

Bogert and others 2007).  For any parcel of water, the fraction of light it accumulates is 217 

the sum of the photosynthetic photon flux density (PPFD, µmol m-2 s-1) accumulated in 218 

the time interval from t to (t + τ) divided by the daily total of PPFD (PPFDtotal). Equation 219 

2 has Odown on both sides; we need Odown on the left side of the equation because we 220 

are comparing modeled Odown with the data. Following some algebra we get:   221 

   222 

𝑂𝑑𝑜𝑤𝑛(!!!)

=
𝑂𝑢𝑝(!) +

𝐺𝑃𝑃
𝑧 × 𝑃𝑃𝐹𝐷!!!

!
𝑃𝑃𝐹𝐷!"!#$

+ 𝐸𝑅𝑧 𝜏 + 𝐾𝜏
𝑂𝑠𝑎𝑡𝑢𝑝 ! − 𝑂𝑢𝑝(!) + 𝑂𝑠𝑎𝑡𝑑𝑜𝑤𝑛 !!!

2

1+ 𝐾𝜏2
 

(3) 223 
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Assumptions of this model are that GPP is a linear function of light intensity, ER 224 

is constant throughout the day, and that the average of up and down station O2 saturation 225 

deficit is representative for the entire reach. We tested the assumption of linear light 226 

relationships by using 1-station models (equation 4 below) for 1 day on each river with a 227 

Jassby-Platt light saturation function exactly following Holtgrieve and others (2010).  228 

Eight of 14 rivers had linear light response curves. Six showed slightly curvilinear 229 

relationships, with increase in GPP 3-10%, with a concomitant two-fold increase in the 230 

credible intervals.  In a two-station model with 3-h travel times, it would be necessary to 231 

divide these travel times into 5-min intervals to calculate and sum GPP for each. We felt 232 

that a potential increase in accuracy of 10% for 6 of the rivers did not warrant this 233 

increased model complexity. We did not include a diel temperature response for ER 234 

because the relationship of ER to temperature is highly variable (Huryn and others 2014, 235 

Jankowski and others 2014), and thus we would have needed to estimate this parameter 236 

in addition to GPP, ER, and K, possibly producing an overfitted model.  Gas exchange is 237 

estimated as K600 (d-1) and is corrected for temperature at each time step based on 238 

Schmidt number scaling (Jähne and Haußecker 1998).  We convert this per time rate to a 239 

gas exchange velocity (k600, m/d) by multiplying by mean depth, z, to facilitate 240 

comparisons with published gas exchange velocities.  We used modeled solar insolation 241 

data for Eq 3 based on geographic location and time of day and year.   242 

For the 3 rivers using a one station method (North Platte, Bear, and Muskegon), 243 

we used the following model (Van de Bogert and others 2007): 244 

𝑂! = 𝑂!!!! +
!""
!
× !!"#!
!!"#!"!#$

+ !"
!
Δ𝑡 + 𝐾Δ𝑡 𝑂𝑠𝑎𝑡!!!! − 𝑂!!!!   (4)  245 

      246 
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where t is time of day and Δt is the time between O2 measurements. This model measures 247 

O2 change in one place rather than tracking it downstream and in a longitudinally 248 

homogenous river, one-station analyses will give the similar results to a two-station 249 

model (Reichert and others 2009). Of the 3 rivers, only the Muskegon had a dam located 250 

47 km upstream, but we suggest that its influence was negligible because the dam was 251 

located twice the distance (1.6V/K) for 80% of O2 turnover (Chapra and Di Toro 1991) . 252 

Based on the above models, we used a Bayesian inverse modeling procedure to 253 

estimate metabolism (GPP and ER) and gas exchange rate (K600) roughly following 254 

Holtgrieve and others (2010). Bayesian analysis treats parameters as random variables 255 

with a corresponding probability distribution and allows estimating uncertainty for the 256 

modeled parameters.  Because we solved for gas exchange as well as GPP and ER, there 257 

is the risk of overfitting the model, and posterior probability distributions solved via a 258 

Bayesian approach allowed us to examine this assumption closely. At all but one sites we 259 

had two full days of data, and we fit each daytime period separately starting at 22:00 the 260 

night before to 06:00 the day after for a total of 32 h.   261 

Following Bayes rule, we calculated the posterior probability distribution of the 262 

parameters as: 263 

       (5) 264 

where θ is a vector of parameters, GPP, ER and K, and D is the O2 data for the 265 

downstream or single station.  The likelihood of the data given θ assumes normally 266 

distributed error and is calculated as: 267 

 ℒ 𝐷|𝜃 = 𝑁 𝐷! 𝜇! ,𝜎!!!
!!!        (6)   268 

P(θ |D)∝P(D |θ )×P(θ )
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where the likelihood of D given 𝜃 is the product of likelihoods of the data relative to 269 

modeled downstream O2 concentrations (𝜇! , ) and variance (𝜎!!) . We simulated the 270 

posterior distribution P(θ |D) using a Metropolis algorithm and Markov-chain Monte 271 

Carlo (MCMC) using function metrop in the mcmc package for R (Geyer 2010, R 272 

Development Core Team 2011).  We ran each chain for 20,000 iterations following burn 273 

in and we started all MCMC chains with different parameter values to ensure a global 274 

solution.  We did not thin chains and we adjusted the proposal distribution of the 275 

Metropolis algorithm to achieve an acceptance rate near 20%.  For metabolism 276 

parameters, we used minimally informative prior probability distributions (GPP ~ N 277 

(µ=5, sd=10), ER ~ N (µ=-5, sd=10).  For gas exchange, we used the nighttime regression 278 

method (Hornberger and Kelly 1975) or empirical equation 7 from Raymond and others 279 

(2012) to assign a normal prior probability distribution, where the mean and standard 280 

deviation of the prior probability distribution were the mean and standard deviation 281 

respectively of the 4 slopes from nighttime regression measured by the two O2 sondes 282 

over two nights or the error in the predictive equation.  Code for one- and two-station 283 

models is in Appendix 5. 284 

 285 

Calculation of C spiraling 286 

We calculated turnover length of OC for each river following (Newbold and others 1982) 287 

where spiraling length (SOC, m) is the ratio of downstream transport relative to 288 

mineralization and is calculated as: 289 

 𝑆!" =   
!×[!"]
!!"×!

       (7) 290 

 291 
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Discharge (Q) and stream width (w) were estimated as described above, and the sum of 292 

POC and DOC gives the organic C concentration [OC].  However, to calculate SOC 293 

requires an estimate of heterotrophic respiration (HR, which is a negative flux) that 294 

equals ER – AR, where AR is the respiration by algae and macrophytes themselves. 295 

Typically researchers assume that AR is some fraction of GPP (e.g., 0.2 to 0.5) but a 296 

recent analysis suggests that the daily fraction of GPP (ARf) consumed by respiration by 297 

algae is about 44% (Hall and Beaulieu 2013).  Assuming this fraction, we estimated HR 298 

as:  299 

  HR = ER - ARf	
 ×GPP       (8) 300 

 Turnover length of OC will depend strongly of the size of the river.  To compare 301 

mineralization relative to [OC] (i.e., [DOC] + [POC]) we calculated a “mineralization 302 

velocity” (vf-OC, m d-1) of OC as: 303 

 𝑣!!!" =
!!"
[!"]

         (9) 304 

analogous to uptake velocity measured in nutrient uptake studies (Hall and others 2013).  305 

We converted HR in O2 units to g C m-2 d-1 by assuming a 1:1 molar relationship between 306 

C and O in respiration and we then compared vf-OC to those measured in other rivers and 307 

streams where OC spiraling length was reported.  Error in not perfectly knowing ARf may 308 

introduce error into estimates of vf-OC.  Therefore we calculated vf-OC  1000 times with 309 

each replicate using a randomly selected estimate of ARf from Hall and Beaulieu (2013) 310 

and 3 subsequent studies (Roley and others 2014, Genzoli and Hall in revision,  R. O. 311 

Hall et al, unpublished data).  Finally, we compared Soc to the estimate of river length 312 

estimated from GIS; we defined the segment distance for each river as the length of river 313 

downstream of a major reservoir or confluence of large tributary and upstream of a lake, 314 



 14 

reservoir, or much larger river.  This designation of river length was not meant as a 315 

definition, but rather to provide some context for considering OC turnover length, Soc. 316 

 317 

Statistical inference 318 

 We used Pearson correlations to relate rates of metabolism to predictor variables, 319 

and rates of C spiraling to river size.  Inference on this correlation coefficient (r) was 320 

based on calculating default Bayes factors for correlation (Wetzels and Wagenmakers 321 

2012), which can be interpreted as the relative probability that a linear relation exists 322 

between 2 variables. Bayes factors >6 constitute strong evidence in support of the 323 

alternative hypothesis (linear relation) versus a null.   We estimated error on metabolism 324 

estimates, GPP, ER and K600, not as the parameter error from the MCMC solutions, but 325 

rather on the bootstrap 95% confidence intervals from the 2-8 metabolism estimates (i.e., 326 

the median value of the posterior probability distributions) at each site. This approach 327 

assumes no within-estimate error, which follows the fact that the among-estimate error 328 

exceeded the parameter error from any one MCMC solution. We performed all statistics 329 

using R (R Development Core Team 2011). 330 

 We compared rates of metabolism in this study to those from many other streams 331 

and rivers, collating estimates of reach-scale, open channel metabolism from Marcarelli 332 

and others (2011).  We also added newer studies to this data set, of which several are 333 

from similar sized rivers as the ones studied here (Appendix 4).  We used locally 334 

weighted regression (Trexler and Travis 1993) with a smoothing parameter of 0.75 to 335 

visualize trends in metabolism as a function of river discharge. 336 

 337 
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Results 338 

Models fit the data closely and had low error in estimates of the parameters, GPP, 339 

ER, and K (Fig 1).  The 95% credible interval on metabolism parameters for any model 340 

fit averaged < 10% of the of value of the parameter itself  (Table 1).  Variation in 341 

parameter estimates between the two measurement days or among sondes was higher 342 

than credible intervals within any one day (Table 1, Appendix 2).   343 

GPP and ER varied strongly among the 14 rivers (Table 1, Fig 3); variation in 344 

GPP ranged from 0.6 to 22 g O2 m-2 d-1, and encompassed much of the range of GPP 345 

measured previously in small streams. However, for these rivers, unlike many smaller 346 

streams, GPP and ER fell closer to the 1:1 line (Fig 3) suggesting that these 14 rivers had 347 

low rates of HR relative to GPP.  Neither turbidity nor nutrient concentrations correlated 348 

with GPP or ER in any of the rivers (Appendix 3).  Nearly all Pearson correlation 349 

coefficients were < |-0.48|, with corresponding Bayes factor of < 0.9, which provided no 350 

support for a linear relationship between the metabolism parameters and potential 351 

covariates (Appendix 3).  Two exceptions were benthic chlorophyll and total chlorophyll 352 

which positively correlated with ER (r=0.76 and 0.78 respectively with Bayes factor >27 353 

indicating strong evidence).  Log transformed GPP and |ER| were strongly positively 354 

correlated with each other (Fig 3, r=0.74, Bayes factor = 18.6). 355 

River size affected variation in metabolic rates and GPP/|ER|.   GPP and ER were 356 

highly variable, but peaked in mid-sized rivers (Fig 4).  Estimates of heterotrophic 357 

respiration in our 14 rivers spanned a broad range, but were not as high as some streams 358 

with <10 m3 s-1 discharge.  The ratio GPP/|ER| increased with increasing river size, and 359 

large streams and rivers did not have low values of GPP/|ER|.  For example, 50% of 360 
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rivers with Q < 10 m3 s-1 had GPP/|ER| < 0.3.  On the other hand, in rivers with Q > 10 361 

m3 s-1, only 14% had GPP/|ER| < 0.3. 362 

Gas exchange (K600) varied among the rivers (Table 1), with a mean of 5.7 d-1 and 363 

a range of 0.5 to 16 d-1; gas exchange rates corresponded to a mean gas exchange velocity 364 

(k600) of 20.8 cm h-1 with a range of 2 to 71 cm h-1.  Gas exchange rate was uncorrelated 365 

with river depth, but river depth only varied two-fold among the 14 rivers. River slope 366 

strongly predicted gas exchange velocity (Fig 2), and k600 fell closely to the prediction 367 

estimate based on empirical equations used for many studies (Raymond and others 2012) 368 

(Fig 2).  The 1:1 prediction line explained 84% of the variation in these 14 rivers relative 369 

to the 76% R2 in Raymond and others (2012). 370 

Organic C spiraling lengths (SOC) averaged 319 km and ranged from 38 to 1193 371 

km, and SOC lengths were generally similar to their respective river segment lengths; 372 

median ratio of SOC to segment length was 1.6 with a range of 0.2 to 4.7 (Table 2).  Arid-373 

land rivers with high suspended organic sediment loads and low HR (e.g., Green River at 374 

two Utah sites, Colorado River, and Bear River, UT) had much longer SOC than other 375 

rivers (Table 2). Mineralization velocities (vf-OC) for the 14 rivers averaged 0.37 m d-1 and 376 

ranged from 0.05 to 0.81 m d-1 and when combined with previous studies, vf-OC correlated 377 

positively with discharge (r = 0.50, Bayes factor = 127, strong evidence) (Fig 5).     378 

 379 

Discussion 380 

Gross primary production and ER varied strongly in our 14 rivers; this variation 381 

corresponded to that of other previous measurements in similar-sized rivers. One river, 382 

the Henry’s Fork, ID had among the highest GPP ever measured for a stream or river. 383 
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Others, like the Bear River, UT had low rates of metabolism.  The 4 rivers in the 384 

Midwestern US had moderate rates of metabolism with low variation among them.  385 

Despite evidence showing that GPP can increase as a function of stream or river size (Fig 386 

4) (Finlay 2011), variation in metabolism among rivers was large enough that rivers have 387 

no characteristic rate of metabolism. 388 

Because we measured metabolism on only 2 days, during summer baseflow 389 

conditions, we did not have a large within-river dataset to examine uncertainty on our 390 

estimates.  As such, we used a Bayesian method that allowed us to examine parameter 391 

error within any one day (Holtgrieve and others 2010).  This approach becomes necessary 392 

when solving for gas exchange as well as metabolic parameters to avoid equifinality 393 

among parameter estimates.  In fact, we found low rates of parameter error.  Variation 394 

among sondes, or between the two measurement days, were higher than error estimated 395 

via computational Bayesian approach on any one day, suggesting that these within-day 396 

error estimates may not represent day-to-day error well. 397 

 398 

GPP and ER  399 

GPP ranged widely in our 14 rivers from among the highest rate ever measured 400 

(e.g., Henry’s Fork) to low rates that were similar to those measured in small, forested 401 

streams. Despite this high variability, we were unable to statistically assess controls on 402 

variation of GPP among our 14 rivers. Time series of metabolism clearly show that 403 

turbidity can control rates of GPP in a river (Hall et al. 2015). We certainly expected that 404 

variation in turbidity would control GPP among rivers, but we found only weak 405 
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correlation between GPP and turbidity (Appendix 3), even though variation in turbidity 406 

was high, suggesting that some other processes were controlling variation.  407 

We acknowledge that we only measured metabolism for two days; it is very likely 408 

that antecedent conditions (e.g., time since last flood) may have controlled the rates of 409 

GPP that we measured. Variation in the metabolism of one river can be as large as 410 

variation among rivers, and a strong role for antecedent conditions has been noted 411 

(Uehlinger 2006; Roberts and others 2007; Beaulieu and others 2013). One river, the 412 

Muskegon, had an unexpected dam release, tripling discharge the day before our 413 

metabolism estimates.  This spate may have affected metabolism.   414 

Despite these limitations, we can observe some anecdotal evidence for controls on 415 

GPP; for example, the rivers with the two highest rates of GPP (Green River, WY and 416 

Henry’s Fork, ID) were located below water storage impoundments.  Rivers below dams 417 

typically have stable flow and low turbidity and can have high benthic algal biomass with 418 

correspondingly high rates of GPP (Davis and others 2012).  Henry’s Fork also has 419 

substantial inputs of groundwater-fed springs; high metabolism has been measured 420 

previously in other spring streams (Odum 1957; Hall and others 2003; Heffernan and 421 

Cohen 2010). In contrast, Buffalo Fork, WY drains mountain wilderness and is 422 

oligotrophic, and had correspondingly low rates of metabolism. However, we emphasize 423 

that we did not design the overall study to statistically tease out controls on river 424 

metabolism, but rather to assess rates and variation of riverine nutrient uptake (J. L. Tank 425 

and others, unpublished data).  Statistically examining controls on metabolism would 426 

have required many more rivers (Bernot and others 2010), or we would have selected all 427 
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rivers along a gradient of a predicted controlling variable, such as nutrient concentrations, 428 

in one region of the country.   429 

GPP and ER were highly coupled in these 14 rivers (Fig 3), and unlike in some 430 

streams, we did not find high riverine ER associated with low rates of GPP.  This finding 431 

suggests that despite an overall pattern of GPP/|ER| < 1, rivers may not have extremely 432 

high rates of HR, at least during baseflow when they are not transporting large amounts 433 

of terrestrial C and GPP is high. The relationship between GPP/|ER| as a function of river 434 

discharge across the 14 rivers, combined with the full meta-analysis data set, supports 435 

this conclusion with small streams having the potential for both low and high ratios of 436 

GPP/|ER|, whereas rivers > 10 m3 s-1 had GPP/|ER| > 0.3 in 85% of the observations.  437 

Higher rates of GPP in rivers have been previously noted in other meta-analyses of 438 

stream metabolism, with the interesting twist that human perturbation has a stronger 439 

effect on metabolism in small streams relative to rivers (Finlay 2011). Studies that 440 

measure metabolism within a river network have found a similar pattern of increasing 441 

GPP/|ER| with downstream position in the network (Meyer and Edwards 1990; 442 

McTammany and others 2003); increasing GPP/|ER| with river size could be due to 443 

increasing GPP, decreasing HR, or both.   444 

Theory predicts that lower rates of HR should occur in downstream reaches 445 

because most terrestrial (i.e., allochthonous) OC inputs are mineralized in the headwaters 446 

(Webster 2007), yet HR peaks in middle river discharge (Fig. 4). Rather, rivers tended to 447 

have high rates of ER, but do not have the negligible rates of GPP found frequently in 448 

small, often shaded, headwater streams (Fig. 4). Alternatively, the pattern of somewhat 449 

lower HR in larger rivers may be an artifact of the rivers and time chosen for metabolism 450 
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estimates.  Rivers occupying a floodplain may have large spikes in HR during flooding 451 

periods (Colangelo 2007; Dodds and others 2013), which are notably not included in the 452 

14 estimates of river metabolism that we present here. In addition, as shown by Meyer 453 

and Edwards (1990), rivers with large quantities of terrestrially-derived DOC may have 454 

high rates of ER relative to GPP, though we note that they too found a pattern of 455 

increasing GPP/|ER| with increasing stream order.  456 

 Many small streams had |ER|>>GPP; but we suggest that it is not possible to have 457 

GPP>>|ER| because of a necessary upper limit to GPP/|ER|.  For example, high rates of 458 

GPP will result in higher ER because of the combination of associated respiration of the 459 

autotrophs along with heterotrophic organisms contained in stream biofilms. The fraction 460 

of GPP that is autotrophic respiration (AR) will determine this upper limit; given a mean 461 

fraction of GPP respired each day (ARf) of 0.44 (Hall and Beaulieu 2013), we calculate 462 

that GPP/|ER| = GPP/(GPP×0.44) = 2.2.  Thus we predict that the upper limit of 463 

GPP/|ER| is 2.2 because, on average, 44% of GPP constitutes daily autotrophic  464 

respiration.  Indeed only 1.1 % of GPP/|ER| values exceeded 2.2, suggesting that this 465 

value may represent an upper bound for autotrophy in rivers.   466 

 467 

Gas exchange 468 

The 14 rivers had variable gas exchange and river slope was the primary predictor 469 

of gas exchange velocity (k600, Fig. 2); gas exchange was lowest in Bear River, UT which 470 

had gas exchange similar to a low-wind lake (Cole and Caraco 1998).  Gas exchange was 471 

highest in the Henry’s Fork, which at 71 cm h-1 approached that of the steep, whitewater 472 

section of the Colorado through Grand Canyon (Hall and others 2012).  The slope of the 473 
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regression line between river slope and k600 was lower for these 14 rivers than for 474 

multiple measurements in the Colorado River in Grand Canyon (Hall et al. 2012), likely 475 

due to the broad range of reaches through the Grand Canyon, ranging from nearly still to 476 

extremely turbulent rapids.  Our 14 rivers here did not display this within-river variation 477 

in river morphology, even for the pool-drop section of the Green River in Gray Canyon.  478 

Nevertheless, gas exchange predicted using empirical equations matched closely with our 479 

data, even more closely than the original data used to derive these equations (Raymond 480 

and others 2012).    481 

There is much interest in understanding gas exchange in rivers to estimate global 482 

gas fluxes (Raymond and others 2013).  With this study, we show that across a few 483 

medium-sized continental rivers, gas exchange can vary widely.  For the purposes of an 484 

accurate metabolism estimate, it is necessary to estimate gas exchange for each river 485 

because the log–log relationship in Fig. 2 has 2-fold prediction error.  Optimistically, 486 

with high GPP and low rates of O2 turnover (K600), it is possible to model gas exchange 487 

using solely O2 data, with no need to perform an experimental gas tracer addition (e.g., 488 

SF6) in these rivers.  For the purposes of scaling gas exchange, where it is impractical to 489 

empirically measure gas exchange for an entire river network, the method employed by 490 

Raymond et al. (2012) is likely the best available for these medium-sized rivers in the 491 

sense that it is unbiased (though with large prediction error) and captures much of the 492 

variability in k600. 493 

 494 

C spiraling 495 
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Spiraling lengths for OC were generally long, but variable, in these 14 rivers.  In 7 496 

cases SOC was shorter than the length of the river segment that we measured, suggesting 497 

that there can be complete turnover of the OC pool along the length of some rivers. 498 

Functionally, rivers with an SOC roughly equal to segment length have turned over > 50% 499 

of the OC pool in that length, although a caveat to this conclusion is that we evaluated 500 

these rivers at baseflow discharge.  High flows associated with storms or snowmelt would 501 

assuredly result in much longer OC spiraling lengths because the OC flux would increase 502 

more than any increase in organic matter processing (i.e., HR) during high flow periods.  503 

Notably, the singular aspect of C cycling that most C spiraling studies (ours and others) 504 

generally overlook is that most OC transport will occur during periods of high flow, 505 

resulting in substantial intra-annual variation in SOC (Meyer and Edwards 1990).  506 

However, our analysis shows that, at least at baseflow, heterotrophic activity can drive 507 

substantial mineralization of OC along a river’s length. Given scaling relationships 508 

between element spiraling length and river length, a constant vf-OC means that spiraling 509 

length increases less than proportionally with downstream distance from headwaters 510 

(Hall and others 2013). We suggest that OC mineralization and subsequent turnover of 511 

OC pools occurs to the same degree in larger streams and rivers as in the more well-512 

studied small streams. 513 

It is important to note that although GPP/|ER| is higher in rivers than headwaters, 514 

it is clear that there is substantial processing of allochthonous C in rivers supported by the 515 

high rates of HR across a range of stream and river sizes (Fig. 4). This point has also been 516 

noted previously by Cole and Caraco (2001) for large rivers; these findings suggest that 517 

rivers are important sites for the mineralization for OC.  Alternatively this 518 
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“allochthonous” C fueling excess ER downstream could be C produced via 519 

autochthonous production that is subsequently transported, and then mineralized, in 520 

downstream river segments (Genzoli and Hall in revision). 521 

From the perspective of C cycling, data from these 14 rivers combined with that 522 

from the literature support that rivers are reactive ecosystems. With the current interest in 523 

examining how freshwater ecosystems contribute to regional and global C budgets 524 

(Battin and others 2008; 2009; Raymond and others 2013), we suggest that rivers may 525 

strongly influence mineralization and fixation of new C in addition to their more obvious 526 

role in the longitudinal transport of C.  In fact at baseflow, mineralization and transport 527 

are balanced such that OC can turn over completely in some river reaches.  In rivers 528 

without substantial groundwater inputs containing terrestrial sources of dissolved CO2, 529 

we may expect that net ecosystem production (NEP) for rivers will roughly equal CO2 530 

emissions, as has been found for the Hudson River (Cole and Caraco 2001). Metabolism 531 

and C spiraling data from this study represent an approach to examine the 532 

biogeochemical mechanisms controlling riverine C cycling, but only represent a snapshot 533 

in time. In the future, we expect that time series of metabolism data will provide 534 

estimates across a range of seasonal and hydrologic conditions, supporting a more 535 

thorough understanding of the role of rivers in C cycling.  536 
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Figure legends 685 

Figure 1.  Data (thick gray lines) and model fit (thin black line) for 1 686 

representative example of the 2 to 8 metabolism model fits for each of the 14 rivers.  687 

Each model fitting procedure was based on one day’s worth of oxygen data.   Y axis units 688 

are % O2 saturation to facilitate comparison among rivers. 689 

Figure 2.  Panel A. Gas exchange velocity from O2 metabolism model (k600, cm h-690 

1) increased as a function of river slope (%).  Line is linear regression, log10(k600) = 2.07 + 691 

0.79×log10(slope), r2 = 0.89. Panel B.  Modeled gas exchange velocity lies to close to 692 

that predicted by model # 7 in (Raymond and others 2012). Line is 1:1. 693 

Figure 3.  Gross primary production (GPP) versus ecosystem respiration (ER) for 694 

our 14 rivers (black points) and other data (gray circles) show high variation among 695 

studies.  Line is GPP = ER. Axes are log scaled. 696 

Figure 4.  Gross primary production (GPP, Panel A), Ecosystem respiration (|ER|, 697 

Panel B), and GPP / |ER| (Panel C) as a function of river discharge.  Black points are the 698 

14 rivers from this study, gray are other data.  Axes are log scaled. Lines are locally 699 

weighted regression with smoothing factor = 0.75, The point far to the right is from the 700 

Mississippi river and represents the largest possible size for a North American river 701 

(Dodds and others 2013).  Because of the zero density in points between the Mississippi 702 

River and the second largest river in the data set, we did not fit the regression line to the 703 

Mississippi River. 704 

Figure 5. Mineralization velocity of organic carbon (vf-OC) was positively 705 

correlated with discharge.  Gray points are data from other studies, black points are 13 706 

rivers in this study. Error bars are the 5% to 95% quantiles of vf-OC calculated from a 707 
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bootstrap of heterotrophic respiration (HR) from Hall and Beaulieu (2013).  This error 708 

represents uncertainty in HR estimates.  Pearson correlation (r= 0.5) and Bayes factor 709 

(127) support strong evidence for a positive relationship. 710 
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Appendix 2.  Error estimates for metabolism parameters 
 
 
 

 
 
 
Appendix 2, Figure 1.  GPP for 2 to 8 estimates in each of the rivers.  Points are median 
estimate of the posterior probability distribution of the GPP parameter. Line symbols are 
the 2.5% and 97.5% quantiles of the posterior probability distribution. 
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Appendix 2, Figure 2.  Ecosystem respiration (ER) for 2 to 8 estimates in each of the 
rivers.  Points are median estimate of the posterior probability distribution of the ER 
parameter. Line symbols are the 2.5% and 97.5% quantiles of the posterior probability 
distribution. 
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Appendix 2, Figure 3.  Gas exchange (K600, d-1) for 2 to 8 estimates in each of the rivers.  
Points are median estimate of the posterior probability distribution of the K600 parameter. 
Line symbols are the 2.5% and 97.5% quantiles of the posterior probability distribution. 
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Appendix 3. Pearson correlation coefficients (r) between nutrient concentrations, 
turbidity and metabolism (gpp= gross primary production, er = |ecosystem respiration|).  
All data  except temperature were ln transformed.  Bold indicate correlations with strong 
evidence for a linear relationship (r > 0.72 corresponding to Bayes Factor >10 with n=14) 
GPP and |ER| were positively correlated with Bayes factor = 18.6, showing strong 
evidence for a linear relationship. The only other variable to correlate with metabolism 
was benthic and total chlorophyll standing stocks. 
	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  

	
   	
   	
   	
   	
   	
  
  er no3 nh4 srp turbidity DOC 

pelagic 
chla 

benthic 
chla 

total 
chla temp width 

gpp 0.79 0.07 -0.28 -0.02 -0.50 -0.12 -0.02 0.48 0.53 -0.10 -0.07 
er 

 
-0.08 -0.05 0.25 -0.48 -0.03 -0.17 0.76 0.74 -0.26 -0.17 

no3 
  

-0.01 0.50 0.56 -0.05 0.83 0.24 0.32 0.81 -0.11 
nh4 

   
0.04 -0.04 0.30 -0.11 0.21 0.21 -0.02 -0.32 

srp 
    

0.27 -0.02 0.44 0.36 0.27 0.21 -0.52 
turbidity 

     
0.24 0.71 -0.15 -0.10 0.75 0.28 

DOC 
      

-0.05 0.05 0.15 0.05 0.21 
pelagic chla 

       
0.00 0.08 0.89 0.08 

benthic chla 
        

0.95 -0.09 -0.38 
total chla 

         
0.02 -0.29 

temp                     0.30 
  
Units for this table: 
gpp and er (g O2 m-2 d-1), no3 and nh4 (µg N L-1), srp (µg P L-1), turbidity (FNU), DOC 
(mg C L-1), chla (mg chlorophyll a m-2), temp (°C) 
 
 
Appendix 4.  Metabolism data used in meta-analysis.  Units are g O2 m-2 d-1 for GPP and 
ER.  Q is discharge in L s-1.  Table is .csv file. 
 
Appendix 5.  R code used to estimate 2 station metabolism via a Bayesian framework. 
 
 


