5 research outputs found

    Human midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-XL

    Full text link
    Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and prodopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-XL induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-XL anticipates and enhances DAn generation

    Pyrolysed 3D-Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Real-Time Dopamine Detection

    No full text
    Structurally patterned pyrolysed three-dimensional carbon scaffolds (p3D-carbon) are fabricated and applied for differentiation of human neural stem cells (hNSCs) developed for cell replacement therapy and sensing of released dopamine. In the absence of differentiation factors (DF) the pyrolysed carbon material induces spontaneous hNSC differentiation into mature dopamine-producing neurons and the 3D-topography promotes neurite elongation. In the presence and absence of DF, approximate to 73-82% of the hNSCs obtain dopaminergic properties on pyrolysed carbon, a to-date unseen efficiency in both two-dimensional (2D) and 3D environment. Due to conductive properties and 3D environment, the p3D-carbon serves as a neurotransmitter trap, enabling electrochemical detection of a significantly larger dopamine fraction released by the hNSC derived neurons than on conventional 2D electrodes. This is the first study of its kind, presenting new conductive 3D scaffolds that provide highly efficient hNSC differentiation to dopaminergic phenotype combined with real-time in situ confirmation of the fate of the hNSC-derived neurons

    Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain

    Get PDF
    [Background] Magnetic resonance imaging is the ideal modality for non-invasive in vivo cell tracking allowing for longitudinal studies over time. Cells labeled with superparamagnetic iron oxide nanoparticles have been shown to induce sufficient contrast for in vivo magnetic resonance imaging enabling the in vivo analysis of the final location of the transplanted cells. For magnetic nanoparticles to be useful, a high internalization efficiency of the particles is required without compromising cell function, as well as validation of the magnetic nanoparticles behaviour inside the cells.[Results] In this work, we report the development, optimization and validation of an efficient procedure to label human neural stem cells with commercial nanoparticles in the absence of transfection agents. Magnetic nanoparticles used here do not affect cell viability, cell morphology, cell differentiation or cell cycle dynamics. Moreover, human neural stem cells progeny labeled with magnetic nanoparticles are easily and non-invasively detected long time after transplantation in a rat model of Parkinson's disease (up to 5 months post-grafting) by magnetic resonance imaging.[Conclusions+ These findings support the use of commercial MNPs to track cells for short- and mid-term periods after transplantation for studies of brain cell replacement therapy. Nevertheless, long-term MR images should be interpreted with caution due to the possibility that some MNPs may be expelled from the transplanted cells and internalized by host microglial cells.This work was supported by grants from (to AM-S): Spanish Ministry of Economy and Competitiveness (SAF2010-17167), Comunidad Autónoma Madrid (S2011-BMD-2336), Instituto Salud Carlos III (RETICS TerCel, RD12/0019/ 0013). This work was also supported by an institutional grant from Fundación Ramón Areces to the Center of Molecular Biology Severo Ochoa. The authors gratefully acknowledge the financial support of the Reina Sofia Foundation and Comunidad Autónoma Madrid (S2010-BMD-2460) to MR-G.Peer Reviewe

    In Vitro and in Vivo Enhanced Generation of Human A9 Dopamine Neurons from Neural Stem Cells by Bcl-XL*

    No full text
    Human neural stem cells derived from the ventral mesencephalon (VM) are powerful research tools and candidates for cell therapies in Parkinson disease. Previous studies with VM dopaminergic neuron (DAn) precursors indicated poor growth potential and unstable phenotypical properties. Using the model cell line hVM1 (human ventral mesencephalic neural stem cell line 1; a new human fetal VM stem cell line), we have found that Bcl-XL enhances the generation of DAn from VM human neural stem cells. Mechanistically, Bcl-XL not only exerts the expected antiapoptotic effect but also induces proneural (NGN2 and NEUROD1) and dopamine-related transcription factors, resulting in a high yield of DAn with the correct phenotype of substantia nigra pars compacta (SNpc). The expression of key genes directly involved in VM/SNpc dopaminergic patterning, differentiation, and maturation (EN1, LMX1B, PITX3, NURR1, VMAT2, GIRK2, and dopamine transporter) is thus enhanced by Bcl-XL. These effects on neurogenesis occur in parallel to a decrease in glia generation. These in vitro Bcl-XL effects are paralleled in vivo, after transplantation in hemiparkinsonian rats, where hVM1-Bcl-XL cells survive, integrate, and differentiate into DAn, alleviating behavioral motor asymmetry. Bcl-XL then allows for human fetal VM stem cells to stably generate mature SNpc DAn both in vitro and in vivo and is thus proposed as a helpful factor for the development of cell therapies for neurodegenerative conditions, Parkinson disease in particular
    corecore