8 research outputs found
New insight into the biological activity of Salmo salar NK-lysin antimicrobial peptides
NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig’s small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture
Evaluation of new antihypertensive drugs designed in silico using Thermolysin as a target
The search for new therapies for the treatment of Arterial hypertension is a major concern in the scientific community. Here, we employ a computational biochemistry protocol to evaluate the performance of six compounds (Lig783, Lig1022, Lig1392, Lig2177, Lig3444 and Lig6199) to act as antihypertensive agents. This protocol consists of Docking experiments, efficiency calculations of ligands, molecular dynamics simulations, free energy, pharmacological and toxicological properties predictions (ADME-Tox) of the six ligands against Thermolysin. Our results show that the docked structures had an adequate orientation in the pocket of the Thermolysin enzymes, reproducing the X-ray crystal structure of InhibitorThermolysin complexes in an acceptable way. The most promising candidates to act as antihypertensive agents among the series are Lig2177 and Lig3444. These compounds form the most stable ligandThermolysin complexes according to their binding free energy values obtained in the docking experiments as well as MM-GBSA decomposition analysis calculations. They present the lowest values of Ki, indicating that these ligands bind strongly to Thermolysin. Lig2177 was oriented in the pocket of Thermolysin in such a way that both OH of the dihydroxyl-amino groups to establish hydrogen bond interactions with Glu146 and Glu166. In the same way, Lig3444 interacts with Asp150, Glu143 and Tyr157. Additionally, Lig2177 and Lig3444 fulfill all the requirements established by Lipinski Veber and Pfizer 3/75 rules, indicating that these compounds could be safe compounds to be used as antihypertensive agents. We are confident that our computational biochemistry protocol can be used to evaluate and predict the behavior of a broad range of compounds designed in silicoagainst a protein target. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University
Theoretical Evaluation of Novel Thermolysin Inhibitors from Bacillus thermoproteolyticus. Possible Antibacterial Agents
The search for new antibacterial agents that could decrease bacterial resistance is a subject in continuous development. Gram-negative and Gram-positive bacteria possess a group of metalloproteins belonging to the MEROPS peptidase (M4) family, which is the main virulence factor of these bacteria. In this work, we used the previous results of a computational biochemistry protocol of a series of ligands designed in silico using thermolysin as a model for the search of antihypertensive agents. Here, thermolysin from Bacillus thermoproteolyticus, a metalloprotein of the M4 family, was used to determine the most promising candidate as an antibacterial agent. Our results from docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann (MM-PBSA) method, ligand efficiency, and ADME-Tox properties (Absorption, Distribution, Metabolism, Excretion, and Toxicity) indicate that the designed ligands were adequately oriented in the thermolysin active site. The Lig783, Lig2177, and Lig3444 compounds showed the best dynamic behavior; however, from the ADME-Tox calculated properties, Lig783 was selected as the unique antibacterial agent candidate amongst the designed ligands
INTEGRAL EVALUATION OF NEUTRAL ENDOPEPTIDASE INHIBITORS AS POSSIBLE ANTIHYPERTENSIVE AGENTS BY MEANS MOLECULAR MECHANICS, FREE ENERGY CALCULATION AND ADME-TOX PROPERTIES
The most important mechanisms in the blood pressure regulation, fluid volume and sodium -potassium balance in humans is the renin-angiotensin-aldosterone system (RAAS). This regulatory pathway plays a critical role in modulating cardiac function and vascular tone. An alteration in any of the molecules that make up this system (RAAS) could contribute to the development of arterial hypertension. In this important mechanisms, the neutral endopeptidase, also called Neprilysin (NEP) is the main enzyme for the degradation of natriuretic, therefore, it is essential proteins in controlling blood pressure. In this work, we have used docking methodology, molecular dynamics simulationa and free energy calculations method (MM-PBSA), to comprehensively evaluate the inhibitory behavior of some ligands obteined from consulted literature. The principal results obtained shown these ligands were adequately oriented in the NEP pocket. The Lig783, Lig2177, and Lig3444 compounds were those with better dynamic behavior. The energetic components that contribute to the complex's stability are the electrostatic and Van der Waals components; however, when the ADME-Tox properties were analyzed, we conclude that the best possible anti -hypertensive candidate are Lig783 and Lig3444
Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate
One of the problems that most affect humanity today is the wastewater discharge into different water bodies. It was estimated that more than 7 million tons of wastewater are generated worldwide and are discharged into rivers, lakes, and reservoirs. Among the most dangerous wastewaters are those from inorganic chemistry research laboratories, mainly due to heavy metals. These problems have become a highly relevant topic, and numerous researchers have tried to design wastewater treatment systems that will deal more efficiently with heavy metals elimination. In this work, the synthesis, characterization, and evaluation of hydrated aluminium silicate were performed as alternative wastewater treatment from chemistry research and teaching laboratories. The compound obtained was Al2O33SiO2H2O, which was characterized by the determination of its physicochemical properties. These revealed a low density, very porous material, with low crystallinity, strong chemical resistance, a large surface area, and a high apparent ionic exchange capacity. Absorption kinetics studies of heavy metals in aqueous solutions, through more widespread models, have demonstrated that Al2O33SiO2H2O has excellent properties as absorbents of this material. The amorphous hydrated aluminium silicate achieves a decrease in the concentration of all the metal ions studied, reducing them to discharge levels permissible
Design and functional characterization of Salmo salar TLR5 agonist peptides derived from High Mobility Group B1 acidic tail.
<p>Based on the structural knowledge of TLR5 surface using blind docking platforms, a series of peptides derived from HMGB1 truncated acidic tail from Salmo salar was designed TLR5 agonistic. Also, a template peptide with the wild type C-terminal acidic tail sequence as reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of complex.</p>