59 research outputs found

    Relations for a periodic array of flap-type wave energy converters

    Get PDF
    This paper investigates the interaction of plane incident waves with a wave farm in the open ocean. The farm consists of a periodic array of large flap-type wave energy converters. A linear inviscid potential-flow model, already developed by the authors for a single flap in a channel, is considered. Asymptotic analysis of the wave field allows to obtain new expressions of the reflection, transmission and radiation coefficients of the system. It is shown that, unlike a line of heaving buoys, an array of flap-type converters is able to exploit resonance of the system transverse modes in order to attain high capture factor levels. Relations between the hydrodynamic coefficients are derived and applied for optimising the power output of the wave farm.Comment: Accepted for publication on Applied Ocean Research, 26 Sept 201

    Hydro-electromechanical modelling of a piezoelectric wave energy converter

    Get PDF
    We investigate the hydro-electromechanical coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributedparameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydro-elastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant

    Hydro-acoustic frequencies of the weakly compressible mild-slope equation

    Get PDF
    We present a novel analytical solution for hydro-acoustic waves in a weakly compressible fluid over a slowly varying bottom. Application of a multiple-scale perturbation technique and matched asymptotic analysis leads to a uniform analytical solution of the depth-averaged governing equations in three dimensions. We show that the slow depth variation plays a leading-order effect on the evolution of the normal mode amplitude and direction. This dynamics is much richer than the two-dimensional limit analysed in previous studies. For tsunamigenic disturbances, we show that the hydro-acoustic wave field is made up by longshore trapped and offshore propagating components, which were not explicated in previous work. For a plane beach, we find an exact analytical solution of the model equation in terms of integrals of Bessel functions. Our model offers a physical insight into the evolution of hydro-acoustic waves of interest for the design of tsunami early warning systems

    The Force of a Tsunami on a Wave Energy Converter

    Get PDF
    With an increasing emphasis on renewable energy resources, wave power technology is fast becoming a realistic solution. However, the recent tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand the force of an incoming tsunami. The analytical 3D model of Renzi & Dias (2012) developed within the framework of a linear theory and applied to an array of fixed plates is used. The time derivative of the velocity potential allows the hydrodynamic force to be calculated.Comment: 12 pages, 6 figures, 2 tables, 16 references. Paper presented at the ISOPE-2012 conference. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Resonant behaviour of an oscillating wave energy converter in a channel

    Get PDF
    A mathematical model is developed to study the behaviour of an oscillating wave energy converter in a channel. During recent laboratory tests in a wave tank, peaks in the hydrodynamic actions on the converter occurred at certain frequencies of the incident waves. This resonant mechanism is known to be generated by the transverse sloshing modes of the channel. Here the influence of the channel sloshing modes on the performance of the device is further investigated. Within the framework of a linear inviscid potential-flow theory, application of the Green theorem yields a hypersingular integral equation for the velocity potential in the fluid domain. The solution is found in terms of a fast-converging series of Chebyshev polynomials of the second kind. The physical behaviour of the system is then analysed, showing sensitivity of the resonant sloshing modes to the geometry of the device, that concurs in increasing the maximum efficiency. Analytical results are validated with available numerical and experimental data.Comment: Accepted for publicatio

    The influence of landslide shape and continental shelf on landslide generated tsunamis along a plane beach

    Get PDF
    This work proposes an advancement in analytical modelling of landslide tsunamis propagating along a plane beach. It is divided into two parts. In the first one, the analytical two-horizontal-dimension model of Sammarco and Renzi (2008) for tsunamis generated by a Gaussian-shaped landslide on a plane beach is revised and extended to realistic landslide shapes. The influence of finiteness and shape of the slide on the propagating waves is investigated and discussed. In the second part, a new model of landslide tsunamis propagating along a semi-plane beach is devised to analyse the role of the continental platform in attenuating the wave amplitude along the shoreline. With these parameters taken into account, the fit with available experimental data is enhanced and the model completed

    Motion-resonant modes of large articulated damped oscillators in waves

    Get PDF
    Using a semi-analytical approach, we show that an articulated system of large damped oscillators in the open ocean can be resonated by incoming waves at multiple frequencies. As an application, energy extraction from the system is modelled when the oscillators are used as flap-type wave energy converters. A new parameter – the absorption efficiency – is introduced to analyse the performance of the system at resonance. This allows us to identify the occurrence of detrimental processes near the resonant frequencies, which reduce the sustainability of the energy conversion process. This result challenges the diffused belief that large flap-type wave energy converters must be designed to resonate, which is based on the use of inappropriate performance descriptors

    Hydro-acoustic precursors of gravity waves generated by surface pressure disturbances localised in space and time

    Get PDF
    We consider the mechanics of coupled underwater-acoustic and surface-gravity waves generated by surface pressure disturbances in a slightly compressible fluid. We show that pressure changes on the ocean surface, localised in space and time, can induce appreciable underwater compression waves which are precursors of the surface gravity waves. Although the physical properties of acoustic-gravity waves have already been discussed in the literature, such dynamics was not investigated in previous studies. We derive new results for the underwater compression wave field and discuss the dynamics of its generation and propagation. This work could lead to the design of innovative alert systems for coastal flooding management

    Wave farm modelling of oscillating wave surge converters

    Get PDF
    A mathematical model is described to analyse the hydrodynamic behaviour of a wave energy farm consisting of oscillating wave surge converters in oblique waves. The method is a highly efficient semi-analytical approach based on the linear potential flow theory. Wave farms with a large number of such devices are studied for various configurations. For an inline configuration with normally incident waves, the occurrence of a near-resonant behaviour, already known for small arrays, is confirmed. A strong wave focusing effect is observed in special configurations comprising a large number of devices. The effects of the arrangement and of the distance of separation between the flaps are also studied extensively. In general, the flaps lying on the front of the wave farm are found to exhibit an enhanced performance behaviour in average, owing to the mutual interactions arising within the array. A random sea analysis shows that a slightly staggered arrangement can be an ideal layout for a wave farm of this device. The hydrodynamics of two flaps that oscillate back to back is also discussed

    A second-order theory for wave energy converters with curved geometry

    Get PDF
    A second-order theory for wave energy converters with curved geometr
    corecore