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We present a novel analytical solution for hydro-acoustic waves in a weakly compressible
fluid over a slowly varying bottom. Application of a multiple-scale perturbation technique
and matched asymptotic analysis leads to a uniform analytical solution of the depth-
averaged governing equations in three dimensions. We show that the slow depth variation
plays a leading-order effect on the evolution of the normal mode amplitude and direction.
This dynamics is much richer than the two-dimensional limit analysed in previous studies.
For tsunamigenic disturbances, we show that the hydro-acoustic wave field is made up
by longshore trapped and offshore propagating components, which were not explicated
in previous work. For a plane beach, we find an exact analytical solution of the model
equation in terms of integrals of Bessel functions. Our model offers a physical insight into
the evolution of hydro-acoustic waves of interest for the design of tsunami early warning
systems.
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1. Introduction

A systematic investigation on the mechanisms of co-generation of gravity and hydro-
acoustic (HA) waves by the same source has started only very recently, motivated
by interesting possibilities of application in coastal engineering. Stiassnie (2010) was
among the first to derive an analytical model of gravity and HA wave generation
by a tsunamigenic bottom deformation in uniform water depth. Later, Renzi & Dias
(2014a) solved a similar problem, but with the forcing term being a localised surface
pressure perturbation in space and time. The propagation of HA waves generated by
bottom movements over a range dependent environment is a more complex problem.
Kadri & Stiassnie (2013) and Kadri (2015) recently developed a non-uniform asymptotic
approximation for shoaling HA waves over a slowly varying bottom in two dimensions
(2D). However, Kadri & Stiassnie (2013) and Kadri (2015)’s results cannot be applied to
a 3D geometry, where the combined effect of shoaling and refraction dramatically alters
the propagation dynamics with respect to the 2D scenario. A significant advancement
in the field is represented by the seminal work of Sammarco et al. (2013), who for the
first time derived a 3D form of the mild-slope equation for weakly compressible fluids
(MSEWC) and solved it numerically. Sammarco et al. (2013)’s numerical solution of the
model equation, however, does not discriminate explicitly between the eigenfrequencies
of the HA modes and how they transform as they propagate.
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In this paper, we derive a novel analytical solution for the propagation of hydro-acoustic
(HA) wave frequencies, generated by bottom movements, in a 3D domain occupied by
a compressible fluid over a range dependent environment. The paper aims to: (i) review
Sammarco et al. (2013)’s formulation of the mild-slope equation for compressible fluids
to derive a form that is solvable analytically in a 3D domain (see §2), (ii) obtain a new
analytical solution of the model equation (see §3) and (iii) identify the physical nature
of the different kinds of HA frequencies excited by tsunamigenic disturbances over a
non-uniform bottom in 3D (see §4).

2. Mathematical model

2.1. Model equations

Calling on Sammarco et al. (2013), consider the motion of a slightly compressible fluid
of density ρ = ρ0 + ρ′, where ρ0 is the constant ambient density and ρ′ � ρ0 is a small
perturbation due to compressibility. Let (x, z) = (x, y, z) describe the coordinate of a
point in a three-dimensional fluid domain D, with the z axis orthogonal to the horizontal
(x, y) plane and pointing upwards from the unperturbed water level z = 0. The bottom
of the ocean is at z = −h(x) + H(x, t), where h(x) is a fixed impermeable surface and
H(x, t) a prescribed time-dependent seafloor motion; t denotes time. The boundary-value
problem for a weakly compressible, inviscid fluid and irrotational motion is:

Φtt = c2
(
∇2Φ+ Φzz

)
, (x , z) ∈ D (2.1)

Φtt + gΦz = 0, z = 0 (2.2)

Φz +∇h ·∇Φ = −Ht, z = −h(x). (2.3)

In the latter system of equations, Φ(x, z, t) is the 3D velocity potential, g is the ac-
celeration due to gravity and c = 1480 m/s is the speed of sound in water, assumed
constant. Also, ∇f(x) = (fx, fy) is the 2D gradient and subscripts denote differentiation
with respect to the relevant variable. The system (2.1)–(2.3) describes acoustic-gravity
waves generated by the bottom disturbance H and is the same as that considered by
Sammarco et al. (2013). In this paper we shall develop a mathematical method to solve
the system of governing equations (2.1)–(2.3) analytically. First, we shall adopt a Galerkin
approach (Massel 2013) to derive the governing partial differential equation (PDE) in
the horizontal plane. Then we shall solve it by combining a multiple-scale perturbation
approach with asymptotic analysis. We formulate the mathematical problem for a generic
single frequency f of the forcing spectrum, assuming the decompositions:

H(x, t) = Re
{
H̄(x) e−iωt

}
, Φ(x, z, t) = Re

{
Φ̄(x, z)e−iωt

}
, (2.4)

where i is the imaginary unit and ω = 2πf is the angular frequency. Re {·} denotes the
real part and will be omitted in the following for the sake of brevity. Results for generic
time-dependent disturbances can be found by Fourier superposition of the harmonic
solution Φ (Mei et al. 2005; Sammarco et al. 2013). Using (2.4), the system (2.1)–(2.3)
becomes (

∇2 +
ω2

c2

)
Φ̄+ Φ̄zz = 0, (x , z) ∈ D (2.5)

Φ̄z −
ω2

g
Φ̄ = 0, z = 0 (2.6)

Φ̄z +∇h ·∇Φ̄ = iωH̄, z = −h(x), (2.7)



Hydro-acoustic frequencies of the weakly compressible mild-slope equations 3

where the complex potential Φ̄(x, z) must be bounded in the fluid domain D. Now expand
the spatial potential into a Galerkin series (Massel 2013)

Φ̄(x, z) =

∞∑
n=0

Φ̄n(x, z) =

∞∑
n=0

φn(x)Zn(x, z), (2.8)

where

Zn(x, z) =

√
2 cosh[βn(z + h)][

h+ g
ω2 sinh2(βnh)

]1/2 . (2.9)

In eq. (2.9) the βn = βn[h(x)] are the solutions of the dispersion relation:

ω2 = gβ0 tanh(β0h), n = 0 , (2.10)

βn = iβ̃n, ω2 = −gβ̃n tan(β̃nh), n > 0 . (2.11)

The 0th mode represents the surface gravity wave, which is hardly influenced by com-
pressibility (Yamamoto 1982; Stiassnie 2010; Renzi & Dias 2014a). The higher modes
n > 0 represent the associated HA waves, which for given frequency ω can be either
evanescent or propagating at large |x|, depending on the system parameters (see §3).
Now introduce the inner product

〈f(z), g(z)〉 =

∫ 0

−h(x)
f(z)g(z)dz,

which together with (2.10)–(2.11) yields 〈Zn, Zm〉 = δnm. Hence the Zn are a set of
orthonormal eigenfunctions in (−h(x), 0). The eigenfunctions (2.9) are a normalised form
of those used in the solution of Sammarco et al. (2013), namely fn = cosh[βn(z +
h)]/ cosh(βnh). Note that the latter expression becomes singular for z < 0 in the
limit βn → i(2n − 1)π/(2h), which describes the HA modes of the system (Yamamoto
1982; Stiassnie 2010). Such a singularity would prevent us from obtaining an analytical
representation of the HA field quantities (though a numerical solution is still possible,
see Sammarco et al. 2013). Conversely, the normalised eigenfunctions (2.9) allow us to
solve the problem analytically. Now, let us expand H̄ into a Galerkin series too

H̄(x) =

∞∑
n=0

H̄n(x) =

∞∑
n=0

Hn(x)Zn(x, z), (2.12)

where the expansion terms

Hn(x) = H̄(x)
2 sinh(βnh)

[2β2
nh+ βn sinh(2βnh)]

1/2
(2.13)

follow from the orthogonality of the Zn (2.9). We are now in a position to derive a
depth-averaged form for the boundary-value problem (2.5)–(2.7). By following the depth-
averaged approach of Sammarco et al. (2013), but using the orthonormal eigenfunctions
(2.9), we get a normalised version of the mild-slope equation for weakly compressible
fluids (MSEWC):

∇2φn +

(
ω2

c2
+ β2

n

)
φn = iωγnHn, n = 0, 1, . . . , (2.14)

where

γn(x) =
4βn

2βnh+ sinh(2βnh)
(2.15)
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has the dimension of a wavenumber. The 0th mode of (2.14) represents a progressive
acoustic-gravity wave (Sammarco et al. 2013). Due to the large difference between
gravity and HA wave propagation speed in water, the gravity mode n = 0 is hardly
influenced by compressibility (Stiassnie 2010). Numerous analytical and numerical models
for the gravity mode propagation over slowly varying bottom are already available in the
literature (e.g Mei et al. 2005; Massel 2013) and will not be discussed further. Here we
shall focus on the HA modes n > 1 of (2.14).

2.2. The MSE for HA waves

As anticipated in §2.1, a good approximation for the HA wavenumbers βn = iβ̃n is

β̃n[h(x)] =
(2n− 1)π

2h(x)
, (2.16)

see for example Yamamoto (1982), Stiassnie (2010) and Renzi & Dias (2014a). As a
consequence, the eigenmodes (2.9) become

Zn(x, z) =

√
2

h
cos

[
(2n− 1)

π

2

(
1 +

z

h(x)

)]
, (2.17)

the forcing terms (2.13) become

Hn(x) =
(−1)n+1

(n− 1
2 )π

√
2h(x) H̄(x) (2.18)

and (2.15) simplifies to γn(x) = 2/h(x). Substituting the latter expressions into (2.14),
one obtains the sought equation for the HA modes:

∇2φn + k2n(x)φn = − 4

π

(−1)n

2n− 1
iωH̄(x)

√
2

h(x)
, n = 1, 2, . . . , (2.19)

where

kn(x) =

√
ω2

c2
− (2n− 1)2π2

4h2(x)
(2.20)

is the horizontal index of refraction of the nth HA mode. Expression (2.19) is a specific
form of the normalised MSEWC. We name (2.19) the MSE for HA waves (MSEHA).

3. Free hydro-acoustic waves over topography

3.1. General solution

In this section we study the homogeneous form of the MSEHA (2.19), which describes
free incoming and outgoing HA waves, in the absence of tsunamigenic forcing. From now
on we consider a generic HA mode, say n ∈ N, on a slowly varying topography in the two
horizontal dimensions (2HD), h = h(εx), ε � 1. We shall now derive a multiple-scale
approximation of the spatial HA potential φn(x). Introduction of the slow variables

ξ = εx, η = εy, (3.1)

transforms the homogeneous version of (2.19) into

ε2∇̃2φn + k2n(ξ, η)φn = 0, (3.2)

where ∇̃ = (∂/∂ξ, ∂/∂η) is the nabla operator in the slow coordinates. We will first
consider the case of real kn and deal with complex wavenumbers later on. Note that, in
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the much simpler 1D case over a flat bottom, where kn = const, the spatial potential
would be a combination of φn(ξ) = exp(±iknξ/ε), see e.g. Jensen et al. (2011). For a
2HD varying bathymetry, by similarity we look for solutions of the form

φn(ξ, η) = An(ξ, η) exp

[
i

ε
Sn(ξ, η)

]
, (3.3)

where An(ξ, η) and Sn(ξ, η) are unknown real amplitude and phase functions, respec-
tively. Equation (3.3) is a multiple-scale WKB expression, in which the wave amplitude
varies with the slow coordinates ξ and η, while the phase varies with the fast coordinates
(ξ, η)ε−1, see Bender & Orszag (1999). Substituting (3.3) into (3.2) and taking the real
and imaginary parts of (3.2) separately zero, we get a system of two nonlinear PDEs:

ε2∇̃2An −
∣∣∣∇̃Sn∣∣∣2An + k2nAn = 0, (3.4)

2∇̃An · ∇̃Sn +An∇̃2Sn = 0. (3.5)

Note that the original equation (3.2) and the system (3.4)–(3.5) are absolutely equivalent,
for only the substitution (3.3) has been made so far. Let us now expand the amplitude
and phase functions, respectively

An(ξ, η) = A(0)
n (ξ, η) + εA(1)

n (ξ, η) +O(ε2) (3.6)

and

Sn(ξ, η) = S(0)
n (ξ, η) + εS(1)

n (ξ, η) +O(ε2), (3.7)

where ε � 1. Substitution of (3.6)–(3.7) into the system (3.4)–(3.5) yields, respectively,
an eikonal equation ∣∣∣∇̃S(0)

n (ξ, η)
∣∣∣2 = k2n(ξ, η), (3.8)

and a transport equation

∇̃ ·
{[
A(0)
n (ξ, η)

]2
∇̃S(0)

n (ξ, η)

}
= 0, (3.9)

at the order O(1). The eikonal equation (3.8) can be solved numerically to obtain S
(0)
n for

given h(εx), see Dingemans (1997); Mei et al. (2005). Once the phase function is known,

then the amplitude A
(0)
n can be found by solving the transport equation (3.9), so that

the spatial potential φn (3.3) is determined with an error O(ε), for ε� 1. This numerical
strategy can be applied to higher orders of ε, for any slowly varying bottom profile.

In the following, based on the decomposition (3.3), the eikonal equation (3.8) and
the transport equation (3.9), we shall first prove that the MSEHA (2.19) conserves the
energy flux over a slowly varying depth. Based on this result, we shall derive a uniform
analytical solution for the case of parallel iso-baths in §3.2.

3.1.1. Conservation of energy

The energy flux across a vertical cross section of unit width orthogonal to the direction
of propagation of the nth HA mode is given in physical variables by

Fn(x) =
ρω

2
Im {φ∗n∇φn} , (3.10)

where Im {·} denotes the imaginary part and φ∗n is the complex conjugate of φn, see
Appendix A. Consider a slowly varying bottom in 2HD, h = h(εx), with ε � 1.
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Substitution of the slow variables (3.1) and use of the expansions (3.3) and (3.6)–(3.7)
transforms (3.10) into

Fn(ξ, η) =
ρω

2

[
A(0)
n (ξ, η)

]2
∇̃S(0)

n (ξ, η).

Multiplying the latter expression by 2/(ρω) and taking the divergence, we obtain precisely
the transport equation (3.9), which then yields

∇̃ · Fn = 0, (3.11)

i.e. a conservation equation (Mei et al. 2005). Expression (3.11) proves that the MSEHA
(2.19) conserves the energy flux over a 2HD slowly varying bottom. Note that we do not
need to apply auxiliary conditions on wave energy conservation to solve the MSEHA, as
its solutions already satisfy the conservation law (3.11).

3.2. Solution for cylindrical topography

We shall now consider the case of straight and parallel iso-baths, h = h(εx), which is
amenable to analytical investigation. The depth contours are now parallel to the y axis,
while the x axis points offshore. Using the slow variables (ξ, η), see (3.1), the free-wave
solutions of the MSEHA (2.19) have the form (3.3), where the amplitude function An
and the phase function Sn must satisfy the system of PDEs (3.8)–(3.9) for ε � 1; the
superscripts are dropped for simplicity. In the case of straight and parallel iso-baths, the
horizontal index of refraction kn (2.20) is a function of the offshore coordinate only, and
the eikonal equation (3.8) yields the nonlinear first-order PDE

S2
nξ

+ S2
nη = k2n(ξ), (3.12)

while the transport equation (3.9) becomes

2∇̃An · ∇̃Sn +An∇̃2Sn = 0. (3.13)

Let us first consider the eikonal equation (3.12). Define the wavenumber vector kn(ξ) =
kn(ξ) {cos θn, sin θn}, where θn = θn(ξ) is the angle between the kn vector and the ξ
axis, still unknown. Then (3.12) is equivalent to the vector identity

∇̃Sn = kn, (3.14)

which shows that the wavenumber vector kn is orthogonal to the lines of constant phase
Sn, i.e. the HA wave crests. Now, the curl of (3.14) gives 0 = ∇̃× ∇̃Sn = (kn sin θn)ξ,
which upon integration yields

kn(ξ) sin [θn(ξ)] = αn, (3.15)

where αn is a real constant. Expression (3.15) shows that the longshore component of
kn keeps constant over straight and parallel iso-baths. That is an extension to HA waves
of Snell’s law for gravity waves (Mei et al. 2005). Substitution of (3.15) into the eikonal
equation (3.12) and further integration finally yield the phase function

Sn(ξ, η) = ±
∫ ξ

ξ0

µn(σ) dσ + αnη, (3.16)

where ξ0 is an arbitrary point in the horizontal domain and

µn(ξ) = µn[h(ξ)] =

√
ω2

c2
− (2n− 1)2π2

4h2(ξ)
− α2

n (3.17)
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is the offshore component of the wavenumber. In fact, substituting (3.16) back into (3.14),
the wavenumber vector becomes

kn = k±n (ξ) = {±µn(ξ), αn} , (3.18)

where the top sign (+) refers to outgoing HA waves and the bottom sign (−) refers
to incoming HA waves. As a consequence of (3.18), the orientation of the wavenumber
vector with respect to the offshore direction is given by

θ+n = arctan

(
αn
µn

)
, θ−n = π− arctan

(
αn
µn

)
, (3.19)

for the outgoing and incoming waves, respectively. We are now in a position to solve the
transport equation (3.13) for the amplitude function An. Substituting (3.16) into (3.13),
we get two first-order PDEs:

±2µnAnξ + 2αnAnη = ∓Anµnξ , (3.20)

one for each sign of Sn in (3.16). Expression (3.20) can be solved with the method of
characteristics (Hildebrand 1976). The general solution of (3.20) is of the form v = f(u).
In the latter, u(ξ, η, An) = c1 and v(ξ, η, An) = c2 are the general solutions of

± dξ

2µn(ξ)
=

dη

2αn
(3.21)

and
dξ

2µn(ξ)
= − dAn

An µnξ(ξ)
, (3.22)

respectively; c1 and c2 are arbitrary integration constants. Solving (3.21) by parts gives

u(ξ, η) = −η ± αn
∫

dξ

µn(ξ)
= c1,

while the solution of (3.22) is

v(ξ, η, An) = An(ξ, η)µ1/2
n = c2.

Hence v = f(u) yields

An = A±n (ξ, η) = µ−1/2n (ξ) f

(
±
∫

αn
µn(ξ)

dξ − η
)
, (3.23)

where f is an arbitrary function and again the + sign denotes outgoing waves, while
the − sign denotes incoming waves. On a cylindrical topography, the amplitude function
must satisfy Anη = 0, see Mei et al. (2005). This implies that the arbitrary function f in
(3.23) must satisfy

f

(
−
∫

αn
µn(ξ)

dξ − η
)

= an, (3.24)

for the incoming wave and

f

(∫
αn
µn(ξ)

dξ − η
)

= bn, (3.25)

for the outgoing wave. In (3.24)–(3.25), an and bn are two arbitrary integration constants,
depending on the boundary conditions of the problem at ξ = ξ0. Now recall that in this
section we are considering free waves, as we have eliminated the localised forcing term
in (2.19). In the absence of localised forcing, no radiation condition can be applied (Mei
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et al. 2005). Hence, we must retain both incoming and outgoing waves in the free-wave
solution. Now substitute the phase function (3.16) and the amplitude function (3.23),
together with (3.24)–(3.25), into expression (3.3) for the spatial potential φn. Then sum
both incoming and outgoing waves, and revert to the physical variables (3.1) to obtain
the spatial HA potential

φn(x, y) =
1√

µn(εx)

{
an exp

[
−i

(∫ x

x0

µn(εs) ds− αny
)]

+bn exp

[
i

(∫ x

x0

µn(εs) ds+ αny

)]}
. (3.26)

The latter is a multiple-scale approximation of the solution (Bender & Orszag 1999).
Along the longshore direction y, (3.26) oscillates with a constant wavenumber αn. Along
the offshore direction x, (3.26) describes waves of slowly varying amplitude and fast
varying phase. Now note that, upon certain combinations of ω and αn, the offshore
wavenumber µn (3.17) can become purely imaginary, i.e. µ2

n < 0. In such a case, the HA
perturbation (3.26) ceases to propagate along x. This means that the physical behaviour
of each HA mode φn is governed by the sign of µ2

n(εx). For any ω > 0 we distinguish the
following cases.

(1): |αn| > ω/c. Then µ2
n < 0 for all h and the potential φn (3.26) is a decaying

exponential along x:

φn(x, y) =


an√
µ̃n(εx)

exp
(∫ x

x0
µ̃n(εs) ds

)
exp(iαny) x < x0

bn√
µ̃n(εx)

exp
(
−
∫ x
x0
µ̃n(εs) ds

)
exp(iαny) x > x0

, (3.27)

where

µ̃n(εx) =

√
(2n− 1)2π2

4h2(εx)
+ α2

n −
ω2

c2
. (3.28)

The wave field (3.27) still propagates along y, i.e. parallel to bathymetry, but decays
along x regardless of the water depth! This is different from the known dynamics in 2D,
where each nth HA mode decays only in regions where the water depth is less than the
cut-off value (2n− 1)πc/(2ω), see Yamamoto (1982); Stiassnie (2010); Kadri & Stiassnie
(2013); Kadri (2015). The analytical structure of (3.27) reveals that no simple harmonic
HA waves can exist when |αn| > ω/c, i.e. all HA waves are trapped. Similar to trapped
gravity waves over topography (see Mei et al. 2005), trapped HA waves cannot be excited
by a simple harmonic incident HA wave with a linearised mechanism. However, external
excitation of the trapped modes (3.27) is still possible by a localised source, such as a
submarine failure. This case will be further analysed in §4.

(2): |αn| < ω/c. In this case, the physical behaviour of φn depends on the water depth
h. Let us first define the critical depth

dn =
(2n− 1)π

2
√

ω2

c2 − α2
n

, (3.29)

as the depth at which the offshore wavenumber µn = 0. Then (3.17) rewrites

µn(εx) =

√(
ω2

c2
− α2

n

)(
1− d2n

h2(εx)

)
, (3.30)

so that µ2
n(εx) Q 0 when h(εx) Q dn. Mathematically, the points x = xn such that



Hydro-acoustic frequencies of the weakly compressible mild-slope equations 9

h(εxn) = dn and, consequently, µn(εxn) = 0 are turning points, through which the
HA potential φn (3.26) turns from exponential (µ2

n < 0) to oscillatory (µ2
n > 0). For

definiteness, let us consider a monotonically increasing bottom depth, hx > 0. Then
there exists at the most one turning point xn, solution of h(εxn) = dn, such that µ2

n Q 0

if x Q xn. Note that (3.26) ceases to be valid in the limit x→ xn (i.e. µn → 0). We shall
now determine a uniform asymptotic expansion of (3.26) through the turning point at
x = xn (Bender & Orszag 1999). The physical optics approximation (3.26) suggests that
a uniform asymptotic solution of (2.19) must be of the form

φn(x, y) = Xn(x) exp(iαny). (3.31)

In the latter, αn is still the constant longshore wavenumber following from Snell’s law
(3.15), and Xn is the unknown offshore component of the HA potential. Substitution of
(3.31) into the homogeneous form of (2.19) and use of the slow variables (3.1) yields

ε2X ′′n + µ2
n(ξ)Xn = 0, (3.32)

where the primes denote differentiation with respect to the slow variable ξ. Expression
(3.32) has the form of a time-independent Schrödinger equation of one spatial dimension
(Cheng 2007). Using the method of asymptotic matching at the turning point (Bender
& Orszag 1999), the details of which we omit for the sake of brevity, and then reverting
to the physical variable x = ξ/ε, the solution Xn of (3.32) can be shown to admit the
following uniform asymptotic expansion:

Xn(x) =
2
√
π an√

µn(εx)
[Fn(x)]

1/6
Ai
[
−F 2/3

n (x)
]
. (3.33)

In the latter, an is the HA wave amplitude, Ai is the Airy function and

Fn(x) =
3

2

∫ x

xn

µn(εs) ds. (3.34)

Since Fn(x) becomes purely imaginary if x < xn, (3.33) requires the introduction of a
branch-cut along the positive real axis to avoid multi-valuedness. The uniform asymptotic
expansion for the HA potential φn is then found by substituting (3.33) into (3.31).

3.2.1. Numerical example

Let us now study the propagation of free travelling HA waves, incoming from the
far field at x → ∞, over a slowly varying bottom. A possible physical mechanism for
the generation of an incoming HA wave of frequency f is the far-field interaction of
two gravity waves of frequency close to f/2 (Longuet-Higgins 1950; Kadri & Stiassnie
2013). The multiple-scale solution of §3.2 allows us to gain a deep physical insight
on the system dynamics. As an example, consider the slowly varying bottom profile
h(x) = 3000 + 1000 tanh(2 × 10−5x), in metres, and a train of incident HA waves with
frequency f = 0.2 Hz. This value lies within the characteristic interval of HA frequencies
in the deep ocean, see Kadri & Stiassnie (2013). The water depth in the far field is
h∞ = limx→∞ h(x) = 4000 m, to which corresponds a horizontal index of refraction
kn(h∞) = 7.528 × 10−4 m−1 for the first mode n = 1 (see again 2.20). Hence the
wavelength along the direction of propagation in the far field is λn(h∞) = 2π/kn(h∞) =
8346 m, which is a typical value for HA waves propagating in the deep ocean (Kadri &
Stiassnie 2013). We choose the constant longshore wavenumber αn = 5×10−4 m−1. Note
that this choice affects only the direction of propagation of the HA wave and the location
of the critical depth. With the chosen αn, we get µn(h∞) = 5.628 × 10−4 m−1 for the
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Figure 1. Contour plots of the bottom depth h = 3000 + 1000 tanh(2× 10−5x), in metres, and
vector plots of the wavenumber vector (3.18). (a) Incoming wave: k−

n (x), (b) Refracted wave:
k+
n (x). The parameters are n = 1, f = 0.2 Hz and αn = 5× 10−4 m−1, which correspond to an

angle of incidence of 132◦.

offshore wavenumber (3.17) and θ−n (h∞) ∼ 132◦ for the angle of propagation (3.19) of
the HA wave incoming from the far field. The critical depth is dn = 2289 m and occurs
at the turning point xn = −44.5 km, where µn(xn) = 0.

Let us first analyse the behaviour of the incoming HA wave away from the turning
point. Figure 1(a) shows the contour plot of the bottom depth profile together with the
vector plot of the wavenumber vector k−n (x) = {−µn(x), αn} for the incoming HA wave,
for the first mode n = 1. Offshore of the turning point (x > xn), the water depth is
greater than the critical depth (h > dn) and µ2

n(x) > 0, see (3.30). The wave field is
oscillatory, the wavenumber vector k−n is oriented at about 132◦ with respect to the x
axis (see right side of figure 1a), with the incoming HA crests normal to k−n . Moving
to shallower water towards the turning point (x → xn), the water depth tends to the
critical depth (h → dn) and the offshore wavenumber of the incoming wave µn → 0,
see (3.30). However, the longshore wavenumber αn keeps constant following Snell’s law
(3.15). As a result, k−n → {0, αn} as h→ dn, i.e. k−n decreases in magnitude and becomes
increasingly parallel to the contours as the water depth decreases (see left side of figure
1a). Because of (3.14), the crests become increasingly orthogonal to the depth contours.
Note that this refraction dynamics is opposite to the refraction of gravity waves, where
crests become increasingly parallel to the contours as h decreases, see Mei et al. (2005).
At the turning point (x = xn) the incoming HA wave is refracted back to deeper water.
The refracted wave is outgoing towards the far field and follows the pattern shown in
figure 1(b) for k+

n , exiting the domain at an angle θ+n ∼ 42◦ with respect to the x axis.
Clearly, the total HA wave field in the fluid domain is made up by the sum of incoming
and refracted wave components.

Close to the turning point xn = −44.5 km, (3.18) ceases to be valid. The behaviour
of the HA waves must be analysed with the uniform asymptotic solution (3.33). Figure
2 shows a section of the sample bottom depth profile (figure 2a), together with the
behaviour of the slowly varying wavenumber µn (figure 2b) and the uniform asymptotic
solution φn(x, 0) = Xn(x) (figure 2c), for n = 1, over a long range along the offshore
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Figure 2. (a) Bottom profile (solid line) and critical depth (vertical dashed line), (b) Real (–)
and imaginary (- -) part of the slowly varying wavenumber µn, expression (3.30). (c) Normalised
mode φn/max(φn) for y = 0, see (3.33). Parameters are n = 1, f = 0.2 Hz and αn = 0.0005 m−1.

axis x. Physically, the φn are exponentially decaying HA disturbances when the water
depth is less than the critical depth (h < dn for x < xn), and the sum of incoming
and refracted waves when the water depth is greater than the critical depth (h > dn
for x > xn), as already shown in figure 1. Finally, we compared the asymptotic solution
(3.33) to a fifth-order Runge-Kutta numerical solution of the governing equation (3.2),
see figure 2(c). The agreement between the analytical approximation and the numerical
results is excellent.

Depth-dependent evanescent/propagating dynamics were also observed in 2D by Kadri
& Stiassnie (2013) and Kadri (2015). However, the results obtained in this paper are new
for two main reasons. Mathematically, unlike Kadri & Stiassnie (2013)’s non-uniform
result, the uniform approximation (3.33) seamlessly connects the near and far fields,
without the existence of a transition zone where the solution is not unique (see figure
2 of Kadri & Stiassnie 2013). Physically, the 3D propagation dynamics is significantly
richer than in 2D. In 2D, the topography of the seafloor controls the shoaling effects,
by which the HA waves change height and group velocity as they propagate towards
the shallows. Because of such effects, the nth group velocity becomes null at the critical
depth

d(2D)
n =

(2n− 1)πc

2ω
, (3.35)

causing complete reflection of the relevant HA mode (Kadri & Stiassnie 2013). Indeed,
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Figure 3. (a) Bottom profile for h(x) = 5000 + 3000 tanh(2× 10−5x), in metres, (b)
Normalised HA modes for y = 0, see (3.33). Parameters are f = 0.2 Hz and αn = 0.0005 m−1.

the same result is obtained from (3.29) in the 2D limit αn = 0. In 3D, on the other
hand, the topography of the seafloor controls both shoaling and refraction effects. As a
consequence, the HA waves change both height and direction as they propagate towards
shallow water (see again figure 1 and figure 2). Hence, in 3D each HA mode is not
simply reflected back; instead, it gradually turns away as it approaches the shoreline
(see figure 1a), until the wavenumber component normal to the shoreline vanishes at
the relevant critical depth dn, see (3.29). The latter defines the location where the nth
mode is refracted down the shelf. Unlike the 2D limit (3.35), the critical depth in 3D
(3.29) depends not only on the angular frequency ω of the incoming HA wave, but also
on its longshore wavenumber αn. Expression (3.29) shows that the critical depth dn is
minimum when αn = 0 (normal incidence, 2D limit) and increases with increasing αn
(oblique incidence). Physically, the larger the longshore component of the incoming HA
wave, the less it penetrates towards the shore.

Concerning the higher-order HA modes, note that the critical depth (3.29) increases
linearly with the modal order n. Hence, higher-order modes are associated with greater
critical depths and so propagate less onshore, as shown in figure 3. The latter shows the
plot of the sample bottom depth h(x) = 5000+3000 tanh(2×10−5x) (figure 3a) together
with the uniform asymptotic solutions φn(x, 0) = Xn(x) for the first 2 HA modes (figure
3b). The higher the modal order, the earlier the incoming HA mode is refracted down to
deep water and the less it penetrates into shallower water.

The refraction dynamics modelled by the MSEHA is in agreement with recent field
measurements and numerical modelling of propagating HA waves in complex marine
environments. As an example, Ballard (2012) has investigated the horizontal refraction
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of low-frequency sound off the southeast coast of Florida. Ballard (2012) has shown
that, despite the sediment properties and the water-column sound-speed field exhibit
significant range dependence over the shelf, the dynamics is almost exclusively controlled
by the topography of the seafloor. Indeed, Ballard (2012)’s results confirm that lower
modes propagate further up the shelf and the location where they are refracted down to
deep water is controlled by their critical depth (see again figure 3).

4. Forced hydro-acoustic frequencies over a slowly varying bottom

4.1. Analytical solution on a plane beach

Building on the free-wave results, let us now study how single HA frequencies, forced by
a tsunamigenic disturbance at the bottom of the ocean, propagate over range dependent
environments. For the sake of example, consider the case of a plane beach of depth
h = εx, with ε � 1. Water is in the region x > 0, the shoreline is at x = 0. The plane-
beach geometry has important practical applications in tsunami models (Mei et al. 2005;
Sammarco & Renzi 2008). It is also particularly interesting as it allows one to obtain an
exact analytical solution in terms of integrals of Bessel functions. Following Mei et al.
(2005), consider a tsunamigenic bottom deformation, localised at x = x0:

H̄(x) = H0 δ

(
x− x0
a

)
δ

(
y − 0

b

)
. (4.1)

In the latter, δ is the delta function, x0 > 0 is the position of the centre of the perturbation
along the x axis,H0 is the magnitude of the deformation, a and b are non-dimensionalising
parameters. Results for generic disturbances can be found via the Green theorem (Mei
et al. 2005). Symmetry of the perturbation (4.1) with respect to the x axis allows us to
use the cosine Fourier transform pair along the shoreline

φ̂n(x;α) =

∫ ∞
0

φn(x, y) cos(αy) dy; φn(x, y) =
2

π

∫ ∞
0

φ̂n(x;α) cos(αy)dα, (4.2)

so that the MSEHA (2.19) becomes

φ̂nxx +

[
ω2

c2
− α2 − (2n− 1)2π2

4ε2x2

]
φ̂n = − 4

π

(−1)n

2n− 1
iωH0b δ

(
x− x0
a

)√
2

εx
. (4.3)

We shall now solve (4.3) with the method of patched matching (Bender & Orszag 1999).
First, request that the solution be continuous at x = x0:

φ̂n(x0 + 0;α) = φ̂n(x0 − 0;α). (4.4)

Then, integrate (4.3) with respect to x across the singularity at x = x0, to get

φ̂nx(x0 + 0;α)− φ̂nx(x0 − 0;α) = − 4

π

(−1)n

2n− 1
iωH0 a b

√
2

εx0
. (4.5)

The governing equation (4.3) is of the Bessel kind (Mei 1997). The solution of (4.3) that
satisfies the matching conditions (4.4)–(4.5) depends on the sign of α − ω/c. Again, we
have two cases:

(i) α > ω/c. The solution is

φ̂n(x;α) =
4
√

2

π

(−1)n

2n− 1
iωH0

a b

ε

√
εxKνn

(√
α2 − ω2

c2
x0

)
Iνn

(√
α2 − ω2

c2
x

)
, x < x0,

(4.6)
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for all points landward of the bottom disturbance, and

φ̂n(x;α) =
4
√

2

π

(−1)n

2n− 1
iωH0

a b

ε

√
εx Iνn

(√
α2 − ω2

c2
x0

)
Kνn

(√
α2 − ω2

c2
x

)
, x > x0,

(4.7)
for all points offshore of the disturbance. In (4.6) and (4.7), Iνn and Kνn are, respectively,
the modified Bessel functions of first and second kind and order νn, where

νn =

√
1

4
+

(2n− 1)2π2

4ε2
∼ (2n− 1)π

2ε
, (4.8)

for ε � 1. Recall that Iνn(z) ∼ (0.5z)νn/Γ (νn + 1) as z → 0 and Kνn(z) ∼√
π/(2z) exp(−z) as z → ∞, see Olver et al. (2010). As a consequence, (4.6) yields

φ̂n → 0 for x → 0 and (4.7) gives φ̂n → 0 for x → ∞. Expressions (4.6)–(4.7) represent
trapped HA waves that are important only in a strip near the bottom deformation.

(ii) α < ω/c. The solution is

φ̂n(x;α) = −2
√

2
(−1)n

2n− 1
ωH0

a b

ε

√
εxHνn

(√
ω2

c2
− α2x0

)
Jνn

(√
ω2

c2
− α2x

)
, x < x0,

(4.9)
for all points landward of the bottom disturbance, and

φ̂n(x;α) = −2
√

2
(−1)n

2n− 1
ωH0

a b

ε

√
εx Jνn

(√
ω2

c2
− α2x0

)
Hνn

(√
ω2

c2
− α2x

)
, x > x0,

(4.10)
for all points offshore of the disturbance. In (4.9) and (4.10), Jνn and Hνn are, respectively,
the Bessel and the Hankel functions of the first kind. Recall that Jνn(z) ∼ (0.5z)νn/Γ (νn+

1) as z → 0, see Olver et al. (2010). As a consequence, (4.9) yields φ̂n → 0 for x → 0,

i.e. φ̂n decays towards the shoreline. On the other hand, the function Hνn in (4.10) is
outgoing as x → ∞. Therefore, (4.9)–(4.10) describe HA waves that decay near the
shoreline and propagate towards the far field. Finally, substitution of (4.6)–(4.10) inside
the inverse cosine Fourier transform (4.2), together with the decomposition (2.8), yields
the n-th spatial HA potential

Φ̄n(x, z) = Φ̄tn(x, z) + Φ̄pn(x, z). (4.11)

In the latter,

Φ̄tn(x, z) =
16

π2

(−1)n

2n− 1
iωH0

a b

ε
cos
[
(2n− 1)

π

2

(
1 +

z

εx

)]
×
∫ ∞
ω/c

[
Kνn

(√
α2 − ω2

c2
x0

)
Iνn

(√
α2 − ω2

c2
x

)
He(x0 − x)

+ Iνn

(√
α2 − ω2

c2
x0

)
Kνn

(√
α2 − ω2

c2
x

)
He(x− x0)

]
cos(αy) dα

(4.12)

is the trapped component, where He is the Heaviside step function, while

Φ̄pn(x, z) = − 8

π

(−1)n

2n− 1
ωH0

a b

ε
cos
[
(2n− 1)

π

2

(
1 +

z

εx

)]
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×
∫ ω/c

0

[
Hνn

(√
ω2

c2
− α2x0

)
Jνn

(√
ω2

c2
− α2x

)
He(x0 − x)

+ Jνn

(√
ω2

c2
− α2x0

)
Hνn

(√
ω2

c2
− α2x

)
He(x− x0)

]
cos(αy) dα

(4.13)

is the propagating component. Hence the tsunamigenic bottom disturbance (4.1) gen-
erates a twofold HA wave field, made by trapped components (4.12) and progressive
components which propagate offshore, but decay towards the shoreline (4.13). This
happens precisely because the HA frequencies turn away as they approach the shore
(see again §3). The dynamic pressure can be determined from the HA potential with
the expression pn(x, z, t) = −ρ0Φnt (see Renzi & Dias 2014a), which yields pn(x, z, t) =
ptn(x, z, t) + ppn(x, z, t). In the latter,

p(t,p)n (x, z, t) = Re
{

iρ0ω Φ̄
(t,p)
n (x, z) e−iωt

}
(4.14)

is the dynamic pressure of the nth trapped (propagating) HA component. Finally, we
define the transmission loss as

TL = −20 log10

∣∣∣∣ p̄(x, z)

p0(r = 1 m)

∣∣∣∣ , (4.15)

where p̄(x, z) = iρ0ω Φ̄(x, z) is the spatial component of the total pressure generated by
the bottom disturbance and

p0(r) = ρ0ω
2H0ab

exp(iωr/c)

4πr

is the pressure produced at a distance r by a source of the same intensity as the bottom
disturbance, but in an infinite, homogeneous medium with the ambient density ρ0 (Jensen
et al. 2011).

4.2. Numerical example

Let us now analyse the propagation of HA waves generated by a tsunamigenic distur-
bance at the bottom of a plane beach. For simplicity, we shall consider a unit-volume
displacement, i.e. a = b = H0 = 1m, so that the results will be per unit m3 of displaced
volume. The bottom slope is ε = 0.08. Figure 4 shows the density plot of the pressure ptn
of the trapped HA component (4.14) of frequency f = 0.2 Hz and modal order n = 1 at
the bottom of the ocean, z = −εx, generated by the bottom disturbance at x0 = 25 km
from the shoreline, at a depth h0 = 2 km. This choice of parameters is consistent with
the 1693 East Mediterranean earthquake scenario studied by Cecioni et al. (2015), in
which the signal generated at a depth h = 2 km has a carrier frequency of f ∼ 0.2 Hz.
Figure 4 shows that the trapped component decays either onshore and offshore along the
x axis, but propagates parallel to the shoreline. Note that the trapped component is not
refracted, because it has not a progressive-wave structure along x. The plot of the full
dynamic pressure pn = ptn + ppn is shown in figure 5. The signal mostly propagates from
the generation point towards deeper water in the form of outgoing progressive waves.
This means that the dynamics away from the source is dominated by the propagating
component ppn, which is stronger than the trapped longshore component ptn of figure 4.
Figure 5 also reveals that shorter HA waves travel faster, followed by a tail of longer
waves (see also Yamamoto 1982; Renzi & Dias 2014b). This is opposite to the dispersive
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Figure 4. Pressure ptn of the trapped HA component at the bottom of a plane beach, z = −εx,
generated by a bottom disturbance located at x0 = 25 km from the shoreline; x and y denote the
offshore and longshore directions, respectively. The parameters are n = 1, f = 0.2 Hz, ε = 0.08,
a = b = H0 = 1 m. Pressure values are in Pa/m3 of displaced volume. Values are clipped near
the source for easiness of reading.
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Figure 5. Dynamic pressure pn = ptn + ppn at the bottom of a plane beach, generated by a
bottom disturbance at x0 = 25 km. The parameters are the same as in figure 4. Pressure values
are in Pa/m3 of displaced volume. Values are clipped near the source for easiness of reading.

behaviour of gravity waves (Mei et al. 2005). Finally, note that the refraction effects
discussed in §3 limit the transmission of the signal towards the shore.

We have also analysed the behaviour of higher modes. Already for n = 2, the dynamic
pressure pn is noticeable only in a very small region near the source and then vanishes
quickly away from it. This agrees with the results of Stiassnie (2010), who found that the
first mode carries most of the energy transferred by the bottom motion to the HA waves.
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Figure 6. Transmission loss TL (4.15) at the bottom of a plane beach generated by a bottom
disturbance at x0 = 25 km. The parameters are the same as in figure 4. Transmission loss values
are in dB re 1 m.

Equally, Eyov et al. (2013), Hendin & Stiassnie (2013), Kadri (2015) and Cecioni et al.
(2015) showed that the first HA mode has the largest amplitude and contains most of
the energy. As a consequence, the higher modes n > 1 do not influence the transmission
loss (4.15) away from the source.

Figure 6 shows the transmission loss at the bottom of the fluid domain, z = −εx. The
plot highlights the existence of a shadow zone where TL is maximum and the signal is
strongly attenuated. This result explains the interesting observations of Cecioni et al.
(2015) on the numerical simulation of the AD 365 Eastern Mediterranean earthquake.
Cecioni et al. (2015) noted that the HA perturbation generated by the earthquake off
western Crete could not reach the shallower water areas south-west of Sicily, even after
long time from the earthquake, despite the associated tsunami did hit Sicily. Cecioni et al.
(2015) hypothesised a filtering effect of the water depth as the cause of the phenomenon.
The analytical solution of the MSEHA further clarifies the reason of this dynamics:
refraction turns the propagating HA wave frequencies down to deep water, preventing
them from reaching the shallows, where indeed the transmission loss is maximum (see
again figure 6).

5. Conclusions

We derived a normalised form of the weakly compressible mild-slope equation for HA
waves in 3D (Sammarco et al. 2013) and showed that it satisfies the conservation of
energy on a slowly varying bottom. We obtained a novel uniform analytical solution of
the equation, based on a multiple-scale perturbation technique. For free HA waves over
topography, the bathymetry of the seafloor controls the change in height and direction of
incident HA waves as they propagate towards the shallows. Each HA mode gradually
turns away from the shoreline until it is completely refracted back at the relevant
critical depth. The extent to which the HA modes propagate onshore depends on their
longshore wavenumber. The smaller the longshore component, the farther the incident
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HA wave penetrates in shallow water before being refracted back. Also, low-order modes
are associated with smaller critical depths and so propagate farther onshore.

For forced generation by a tsunamigenic disturbance on a plane beach, we derived
a novel exact analytical solution in terms of integrals of Bessel functions. We showed
that the HA wave field is made up by a longshore trapped and an offshore propagating
component, which is dominant away from the disturbance. Shorter waves travel faster,
followed by a tail of longer waves. Refraction effects limit the transmission of the HA
wave field towards the shore. As a consequence, there exists a shadow zone near the
shoreline where the transmission loss is maximum and the signal vanishes. This result is
particularly important, because TL plots like that of figure 6 can be used to determine the
optimal position of hydrophone networks capable of capturing the HA signal generated
by an underwater earthquake, in advance of the associated tsunami.

We remark that the bottom of the ocean has been assumed rigid in this study. Eyov
et al. (2013) recently developed a model for an elastic bottom in 2D, which shows that
neglecting the elasticity is justified far from the critical depth. At the critical depth,
the leading mode turns into a Scholte wave, due to the modification of the group and
phase speeds induced by the bottom elasticity with respect to the rigid case. Eyov et al.
(2013)’s results would suggest that over a range dependent elastic bottom in 3D, HA wave
refraction is governed by the bathymetry only at frequencies above the cut-off, with the
exception of the first mode. This implies that physically refraction dominates all modes
in deep water, whereas below the critical depth (h < dn) the present solution could be
valid only for the first HA mode, which indeed is dominant. We further remark that
mathematical solutions of HA waves generated by tsunamigenic disturbances over an
elastic bottom in 3D appear not to be available in the literature, leaving this challenging
issue as a topic for further research.

In this paper, we have shown that the trapped longshore HA waves have the
remarkable property of existing at any water depth. For such waves, energy is confined
near the source in the offshore direction and propagates along a narrow strip parallel
to bathymetry. In the case of a bottom dislocation, those longshore waves are much
smaller than the offshore propagating waves, which are dominant. This highlights the
importance of deep-sea observatories to detect the HA signal generated by underwater
earthquakes (Cecioni et al. 2015). However, in the case of a submerged landslide, the
scenario could be different. Since HA waves are generated at different depths as the
slide moves down the incline, energy is transmitted to them at several frequencies and
modes. In this case, the trapped low-frequency HA component could be significant and
longshore HA waves could be used to predict incoming edge waves propagating along a
beach (Sammarco & Renzi 2008). This intriguing research hypothesis is being considered
in ongoing work.

E.R. acknowledges the suggestions of two anonymous referees that have contributed
to the improvement of the paper.

Appendix A. Hydro-acoustic energy flux

Consider the nth HA mode and a vertical cross section of unit width orthogonal to
the direction of propagation along the velocity vector un(x, z, t). The rate of energy flux
across the section is equal to the mean rate of work done by the dynamic pressure (Mei
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et al. 2005; Jensen et al. 2011)

Fn(x) =
ω

2π

∫ 2π
ω

0

∫ 0

−h(x)
pn(x, z, t)un(x, z, t) dz dt. (A 1)

In the latter, pn(x, z, t) = −ρΦnt is the nth order dynamic pressure and un(x, z, t) =

∇Φn is the horizontal velocity vector. The potential Φn(x, z, t) = Re
{
Φ̄n(x, z) e−iωt

}
=

Re
{
φn(x)Zn(x, z) e−iωt

}
, where the Zn are still given by (2.17). Performing the latter

substitutions, (A 1) becomes

Fn(x) =
ρω

2π

∫ 0

−h

∫ 2π
ω

0

Re
{

iωφn(x)Zn(x, z) e−iωt
}

Re
{
∇ [φn(x)Zn(x, z)] e−iωt

}
dz dt.

(A 2)
Now recall the property

ω

2π

∫ 2π
ω

0

Re
{
Ae−iωt

}
Re
{
Be−iωt

}
dt =

1

2
Re {A∗B} , (A 3)

for any complex values A and B independent of t (Mei 1997). Hence, use of (A 3) and
the property < Zn, Zn >= 1 transforms (A 2) into

Fn(x) = −ρω
2

Re

{
iφ∗n(x)

[
∇φn(x) + φn(x)

∫ 0

−h
Zn(x, z)∇Zn(x, z) dz

]}
. (A 4)

Now recall that Zn(x, z) = Zn[h(x), z], so that ∇Zn(x, z) = Znh(h, z)∇h(x). Substitute
the latter into (A 4) and use the property < Zn(x, z), Znh(x, z) >= −1/h to obtain
finally

Fn(x) =
ρω

2
Im {φ∗n(x)∇φn(x)} =

ρω

2
Im {φ∗n(x)un(x)} (A 5)

The latter is the sought HA energy flux vector, which is oriented along the direction of
propagation of the perturbation, as expected.
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