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Abstract

Using a semi-analytical approach, we show that an articulated system of large
damped oscillators in the open ocean can be resonated by incoming waves at
multiple frequencies. As an application, energy extraction from the system is
modelled when the oscillators are used as flap-type wave energy converters.
A new parameter - the absorption efficiency - is introduced to analyse the
performance of the system at resonance. This allows us to identify the occur-
rence of detrimental processes near the resonant frequencies, which reduce
the sustainability of the energy conversion process. This result challenges
the diffused belief that large flap-type wave energy converters must be de-
signed to resonate, which is based on the use of inappropriate performance
descriptors.
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1. Introduction

In this paper we analyse the resonant wave interaction with large artic-
ulated moving structures. We believe that this topic has received too little
attention in the past, despite its importance in several engineering appli-
cations, like e.g. wave energy conversion. Indeed, many studies have been
carried out to investigate the occurrence of resonant amplifications resulting
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from wave-structure interactions in acoustics (see for example Farhat et al.,
2010), optics (see for example Ruan and Fan, 2010) and hydrodynamics (Bu-
dal, 1977; Falnes, 1980; Thomas and Evans, 1981; Heathershaw, 1982; Mei
et al., 1988, 1994; Maniar and Newman, 1997; Sammarco et al., 1997a,b;
Porter and Evans, 1999; Hu and Chan, 2005; Adamo and Mei, 2005; Sam-
marco and Renzi, 2008; Renzi and Sammarco, 2010; Stefanakis et al., 2011;
Hu et al., 2011; Renzi and Dias, 2012, 2013a,b; Renzi et al., 2014a,b). In
the latter discipline, a significant effort was directed towards understanding
the mechanisms of resonant amplification of water waves impinging on fixed
structures, such as periodic bathymetric formations or surface scatterers.
Notable results of such endeavour were the discovery of the Bragg scattering
of ocean surface waves by a periodic bathymetry (Heathershaw, 1982; Mei
et al., 1988) and the identification of resonant long-wave modes on a beach
(Sammarco and Renzi, 2008; Renzi and Sammarco, 2010; Stefanakis et al.,
2011). Interaction of water waves with fixed structures is a living matter
also in offshore ocean engineering. In this field, a significant advancement of
knowledge has been achieved with the discovery of the Rayleigh-Bloch surface
waves trapped along arrays of cylinders (Maniar and Newman, 1997; Porter
and Evans, 1999). Concerning the interaction of water waves with moving
bodies, the theory of interacting point oscillators in water waves is indeed
a subject with honourable history (Budal, 1977; Falnes, 1980; Thomas and
Evans, 1981). Such theory is based on the assumption that the horizontal
extension w of each oscillator is much smaller than the wavelength λ, i.e.
w/λ ≪ 1. This hypothesis allows one to neglect the scattering of the inci-
dent waves on the bodies, hence reducing the complexity of the mathematical
formulation associated with the problem. Despite such advancements, less
effort has been paid towards the study of resonant water wave interactions
with large articulated moving structures, like for example bottom-hinged
rectangular flaps, whose dimensions are not much smaller than the wave-
length: w/λ . 1. Such bodies induce substantial changes in the pattern of
wave propagation (Mei et al., 2005). As a consequence, their interplay with
incident waves can generate resonant interactions which cannot be explained
with the traditional point-oscillator theory. Mei et al. (1994) and Sammarco
et al. (1997a) showed for the first time that incident waves can trigger large-
amplitude pitching motions of an array of narrowly spaced, large rectangular
gates in a channel. Note that the gates of Mei et al. (1994) and Sammarco
et al. (1997a) move in the absence of any power take-off damping. Lately, a
resonant mechanism has been shown to occur for the same oscillators when
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located at the intersection of a straight channel and a semi-infinite domain
(Adamo and Mei, 2005) and for multiple arrays of such oscillators in a chan-
nel (Sammarco et al., 2014). However, the existence of resonant modes for an
articulated system of large, externally damped oscillators in the open ocean
has not yet been investigated. Here we shall undertake this investigation by
considering a system of large rectangular oscillators, hinged upon a bottom
foundation and damped by a resistive action proportional to their angular ve-
locity. Such system has an important application in the field of wave energy
extraction, where these oscillators are known as “flap-type absorbers” (Renzi
et al., 2014b). The flap-type absorber represents the reference mathematical
model used for the design of several wave energy converters (WECs), like for
example the OysterR© Oscillating Wave Surge Converter (OWSC, see Whit-
taker and Folley, 2012; Renzi and Dias, 2012, 2013a,b; Renzi et al., 2014a)
manufactured by Aquamarine Power, with a maximum generating capacity
of 800 kW (www.aquamarinepower.com).

This paper has the following aims:

(i) To model the fluid-structure interaction for a system ofM oscillators
(Section 2).

(ii) To introduce the concept of motion resonance, which describes the
resonant phenomenon triggered by the oscillators moving as an articu-
lated system of interdependent bodies (Section 3).

(iii) To investigate the influence of motion-resonant modes on the effi-
ciency of the oscillators as wave energy converters. A new parameter
- the absorption efficiency - is introduced to undertake a qualitative
analysis of the system at resonance. Such analysis would be otherwise
inaccurate if conducted with existing performance parameters (Section
3).

An application is made for the case of three in-line oscillators, as a funda-
mental cluster for larger wave farms of multiple converters. It is shown that
the excitation of body-to-body resonance is detrimental to the efficiency of
wave energy absorption processes (Section 4).
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Figure 1: Geometry of the system. (a) plan view, (b) section.

2. Model

2.1. Governing equations

Within the framework of the potential flow theory in water of intermediate
depth (Budal, 1977; Falnes, 2002; Mei et al., 2005), consider inviscid and
irrotational water waves in a fluid domain of depth h′ unbounded in the
horizontal (x′, y′) plane. Primes indicate physical dimensional variables. The
domain is pierced by a finite number M of identical flap-type oscillators, i.e.
externally damped flaps of rectangular shape, shown in Fig. 1. The oscillators
are aligned along the y′ direction. The axis z′ rises up from the unperturbed
water level z′ = 0. As mentioned in the Introduction, the flap-type absorber
is the mathematical reference model for the OWSC, a large buoyant flap
used for wave energy extraction in the nearshore environment (Renzi and
Dias, 2012, 2013a,b; Renzi et al., 2014a). Only in-line configurations will be
investigated in this paper, as loss of symmetry in small arrays of OWSCs is
likely to be accompanied by a reduction in efficiency (Renzi et al., 2014a;
Sarkar et al., 2014). The oscillators are set into motion by incident waves
of amplitude A′

I , period T ′ and angular frequency ω′ = 2π/T ′ incoming
along a direction which forms an angle β with the x′ axis. Each of the
oscillators is represented as a large buoyant flap of width w′ hinged on a base
of height c′ at the bottom of the fluid domain, moving under the action of
the incoming wave field with one degree of freedom, i.e. the pitching angle
θ′m(t

′), m = 1, 2, . . . ,M ; t′ denotes time. It is assumed that the amplitude
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of the wave field is small with respect to the width of each device, as it
happens in reality for most of the operational life of the system (Gallagher
et al., 2013). Hence following the linearised theory of Renzi et al. (2014a)
and Sarkar et al. (2014), the velocity potential Φ′(x′, y′, z′, t′) must satisfy
the Laplace equation

∇′2Φ′ = 0 (1)

in the fluid domain, where ∇′f = (fx′, fy′ , fz′) and subscripts denote dif-
ferentiation with respect to the relevant variable. On the free-surface, the
kinematic-dynamic boundary condition reads

Φ′
t′t′ + gΦ′

z′ = 0, z′ = 0, (2)

where g is the acceleration due to gravity, while at the bottom the no-flux
condition requires

Φ′
z′ = 0, z′ = −h′. (3)

Finally, the kinematic condition on the surface of the oscillators writes

Φ′
x′ = −θ′m,t′(t

′)(z′ + h′ − c′)H(z′ + h′ − c′), (4)

on each element m = 1, . . . ,M , where the Heaviside step function assures
absence of flux through the foundation. Following Adamo and Mei (2005),
Renzi and Dias (2012, 2013a,b), Renzi et al. (2014a) and Sarkar et al. (2014),
in Eq. (4) the flap thickness is considered immaterial for the calculation of
the potential. The boundary-value problem (1)–(4) has been already studied
and solved by Renzi et al. (2014a) for an array of flap-type absorbers by
employing the Green integral theorem and a series expansion in terms of the
Chebyshev polynomials. However, Renzi et al. (2014a) did not investigate the
system motion-resonant modes, leaving such analysis to further work which
is undertaken in this paper. In the following, we shall briefly summarise the
method of Renzi et al. (2014a) and eventually delve into the investigation
of the motion-resonant modes of the system. Let us introduce the non-
dimensional variables

(x, y, z) = (x′, y′, z′)/w′, t =
√

g/w′t′, ǫθm = θ′m (5)

and constants
(h, c) = (h′, c′)/w′, AI = A′

I/A
′, (6)
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where A′ is the amplitude scale of the incident wave and ǫ = A′/w′ ≪ 1
is the physical scale of the oscillations. Let us further decompose the non-
dimensional potential Φ and the amplitude of rotation of the mth oscillator
θm as

Φ(x, y, z, t) = ℜ

{(

φI + φD +
M
∑

m=1

Ωmφ
(m)
R

)

e−iωt

}

; θm = ℜ
{

Θme
−iωt
}

,

(7)
respectively. In the latter,

φI(x, y, z) = −
iAI

ω

cosh k(z + h)

cosh kh
e−ikx cos β+iky sinβ

is the spatial component of the incident wave potential, where k solves the
dispersion relation ω2 = k tanh kh. φD is the diffraction potential and φ

(m)
R

is the radiation potential emanating by the mth oscillator when all the other
oscillators are at rest. Ωm = iωΘm and Θm is the complex angular rota-
tion of the mth flap. Finally, it is required that φD and φ

(m)
R are outgoing

perturbations in the far field. Renzi et al. (2014a) and Sarkar et al. (2014)
found semi-analytical expressions for the diffraction potential φD and each
radiation potential φ

(m)
R in Eq. (7) by applying the Green integral theorem in

the fluid domain, thus obtaining a system of hypersingular integral equations
in terms of the jump in potentials across the flaps (see Appendix A of Sarkar
et al., 2014). Such equations are appropriately de-singularised by employing
a series expansion in term of the Chebyshev polynomials of the second kind.
The final results of this procedure, i.e. the mathematical expressions of φD

and φ
(m)
R , are detailed in Sarkar et al. (2014), which the interested reader is

referred to.

2.2. Equation of motion

The full solution of the boundary value problem (1)–(4) still requires to
find the unknown amplitudes of rotation Θm in Eq. (7) and Eq. (4). This
task can be accomplished by solving the following system of equations of
motion for the oscillators in the frequency domain (Falnes, 2002; Mei et al.,
2005; Renzi et al., 2014a; Sarkar et al., 2014):

[

−ω2 (I+M(ω)) +C− iω (N(ω) +H(ω))
]T

Θ(ω) = F(ω). (8)

The latter represents the dynamic equilibrium between inertia, buoyancy,
external damping and hydrodynamic torques acting on each oscillator. In
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Eq. (8), the terms I, C and H(ω) are diagonal M × M matrices. Their
(m,m) entries, Im, Cm and ηm(ω) respectively, are the second moment of
inertia, the restoring buoyancy torque and the external damping rate of each
oscillator. The external damping rate can represent, for example, the damp-
ing action of power take-off mechanisms (e.g. generators) when the oscillators
are used as wave energy converters. Again in Eq. (8), M(ω) and N(ω) are,
respectively, the added-inertia and the radiation damping matrices. The ra-
diation damping matrix N(ω) is also termed radiation resistance matrix in
general physics. The sum Z(ω) = N(ω) + iωM(ω) corresponds to the ra-

diation impedance matrix in acoustics and electromagnetics (Falnes, 2002).
The scalar components µαβ(ω) of M(ω) and ναβ(ω) of N(ω) result from the
hydrodynamic actions on body β when body α is moving and enjoy the sym-
metry property µαβ = µβα, ναβ = νβα (Falnes, 1980; Mei et al., 2005; Renzi
et al., 2014a). Still in Eq. (8), Θ(ω) is a vector whose mth scalar component
is the sought complex amplitude of oscillations Θm(ω). Finally, F(ω) is a
vector whose mth scalar term is the complex exciting torque Fm(ω) acting
on body m when all bodies are held fixed in incoming waves (Falnes, 1980;
Mei et al., 2005; Renzi et al., 2014a). In this paper, the matrices I, C and
H(ω) in Eq. (8) are assumed to be given. The added-inertia matrix M(ω)
and the radiation damping matrix N(ω) are obtained by integrating the spa-

tial components of the radiation potentials φ
(m)
R on the surface of each flap,

as shown in Renzi et al. (2014a). This yields semi-analytical expressions
which are then evaluated numerically. Finally, the exciting torque vector F
is evaluated by integrating the spatial component of the diffraction potential
φD on the surface of each flap. Again, this yields semi-analytical expressions
which can be evaluated numerically at very low computational cost. The
computational aspects of the numerical evaluation of the terms in Eq. (8)
are detailed in Renzi et al. (2014a) and Sarkar et al. (2014).

The mathematical model summarised in this section has significant prac-
tical importance in applications to wave energy systems. Indeed Eqs (1)–(8)
constitute the mathematical model termed “flap-type absorber” by Renzi
et al. (2014b), which is at the basis of the OWSC technology. In the liter-
ature, the flap-type absorber theory has been extensively validated against
numerical and experimental data for several layouts of practical interest.
Renzi and Dias (2012) first validated the model for a single flap in a chan-
nel with respect to numerical data obtained at Queen’s University Belfast
(QUB, U.K.) with the commercial software WAMIT, for monochromatic in-
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cident waves. Renzi and Dias (2012) also showed good agreement between
the flap-type absorber results and the wave tank data obtained at QUB dur-
ing an experimental campaign on the Oyster WEC, again in monochromatic
waves. Renzi and Dias (2013a) validated their model of an infinite array of
flap-type absorbers in the open ocean against numerical results obtained with
a finite-element numerical model developed by the University of Roma Tre
(Italy). Later, Sarkar et al. (2013) successfully compared the flap-type ab-
sorber results in random seas with wave-tank data obtained at QUB. Finally,
Renzi et al. (2014a) showed very good agreement between the semi-analytical
model of an in-line array of flap-type absorbers in monochromatic seas and
numerical data obtained with a finite-element model. The theoretical model
summarised in this section is hence fully validated regarding its computa-
tional coherence and can be successfully employed to simulate the behaviour
of actual OWSC systems.

Despite such intensive analysis on the flap-type absorber, none of the
aforementioned authors have investigated the mechanism of multiple res-
onance for this system in the open ocean, which is analysed in the next
section.

3. Motion Resonance

3.1. Natural modes

As is well known in the theory of dynamical systems, the natural modes
of a system of oscillators are the basic configurations of the free undamped
motion (Kreyszig, 2006). Mathematically, we seek the solutions of the system
of equations of motion (8) when the damping termsN andH and the exciting
torque F are set to zero:

[

−ω2 (I+M(ω)) +C
]T

Θ(ω) = 0. (9)

If all the oscillators are similar, e.g. they have identical moment of inertia I
and buoyancy torque C, then (9) can be conveniently re-written as

[

C−1 (I+M(ω))− α(ω)IM
]

Θ(ω) = 0, ω > 0, (10)

where α(ω) = 1/ω2, IM is the M × M identity matrix and the symmetry
property of M has been used. Eq. (10) is an implicit eigenvalue problem for
ω. The eigenvalues are determined by solving the characteristic equation

∆(ω) = det
[

C−1 (I+M(ω))− α(ω)IM
]

= 0, ω > 0, (11)
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which is an implicit non-linear equation in ω, admitting N different real so-
lutions ωi, i = 1, . . . , N , with N ≤ M . Note that, for given I and C, Eq. (11)
depends only on the added-inertia matrix M. The eigenvalues ωi solution of
Eq. (11) are hence a radiative property of the system and do not depend on
the incident wave characteristics. This is coherent with the position F = 0

made to obtain Eqs (9)–(11). Physically, the ωi represent the natural fre-
quencies of the system (Kreyszig, 2006). Once those are known, the relevant
natural modes are found by setting Θ1 = 1 in Eq. (9) and then solving for
the remaining components of the vector Θ with ω = ωi in succession (for a
similar procedure see also Sammarco et al., 2014). Computational aspects
related to the numerical solution of the implicit equation (11) are detailed in
Appendix A.

In the presence of damping (external plus radiation) and incident waves,
the system resonates when the incident wave frequency is close to any of
the natural frequencies, i.e. ω ≃ ωi (Kreyszig, 2006). Such phenomenon
occurs because the oscillators move as an articulated system of interdepen-
dent bodies and is therefore termed motion resonance. Note that this type
of resonance, due to body-to-body interactions, is intrinsically different from
the resonance of a single floating body by buoyancy alone (Mei et al., 2005;
Adamo and Mei, 2005), in which case the resonant frequency satisfies the
well-known implicit relation

ω0 =

√

C

I + µ11(ω0)
. (12)

In the following sections we shall investigate the effects of motion resonance
on the behaviour of the system, when the oscillators are used to extract
energy from the waves.

3.2. Effect on wave power extraction

Resonance of damped forced oscillators manifests with the excitation of
large oscillations (Kreyszig, 2006). When the oscillators are used to extract
energy from the sea, this mechanism suggests that more power is captured by
the system if it is set to resonate by the incident waves. Indeed the average
power captured by a system of M identical flap-type absorbers oscillating at
a frequency ω during a period T = 2π/ω is given by

P (ω) =
ω2

2
η(ω)

M
∑

m=1

|Θm(ω)|
2 , (13)
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where the PTO damping η is common to all the absorbers (Babarit, 2010;
Renzi et al., 2014a). Note that in Eq. (13) the Θm’s also depend on the PTO
damping η via the system (8). Hence P (13) is a non-linear function of η(ω),
which in turn depends on the PTO strategy adopted by the manufacturer.
Here, for each given frequency ω, we shall use the value of η(ω) which opti-
mises the absorbed power P (ω) in Eq. (13). The optimisation is performed
numerically as outlined in Renzi et al. (2014a). Clearly, for given non-zero
η(ω), peaks of the |Θm| expected at resonant frequencies (Kreyszig, 2006)
determine the absorbed power P (13) to peak at resonance as well. How-
ever, large values of |Θm| violate the small-amplitude oscillation assumption,
resulting in unrealistic large values for the absorbed power P (13) at reso-
nance. Nevertheless, an insight on the system resonant behaviour can still be
obtained with the linearised theory by using the following argument. When
the incident waves encounter the oscillators, part of the incident power is
indeed absorbed by the external damping mechanism. However, part of the
incident wave power is transmitted back to the ocean, associated with the
rate of work done by the oscillating bodies to the fluid (Adamo and Mei,
2005; Mei et al., 2005):

W (ω) =
M
∑

α=1

M
∑

β=1

ναβθα,tθβ,t

=
ω2

2

M
∑

α=1

M
∑

β=1

ναβ(ω) |Θα(ω)| |Θβ(ω)| cos (δα(ω)− δβ(ω)) . (14)

In the latter, the bar indicates the average over a period and δm = arg (Θm) ∈
(−π, π]. The absorption process taking place in the system can be analysed
by defining the absorption efficiency

QM(ω) =
P (ω)

W (ω) + P (ω)

=

(

1 +

∑M

α=1

∑M

β=1 ναβ(ω) |Θα(ω)| |Θβ(ω)| cos(δα(ω)− δβ(ω))

η(ω)
∑M

β=1 |Θβ(ω)|
2

)−1

,

(15)

as the ratio between the absorbed power and the total output power (lost +
absorbed). A good design must try not only to enhance the power capture P
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(13), but also to reduce the lost power W , thus increasing QM (15) towards
its theoretical unit upper limit. Note that the absorption efficiency (15)
is different from the capture factor used in previous work (Renzi and Dias,
2012, 2013a,b) to assess the performance of WEC systems in small-amplitude
oscillations. The capture factor is defined as the ratio between the absorbed
power P and the incident wave power Pinc on the system:

CF (ω) =
P (ω)

Pinc(ω)
=

ω2η(ω)

2Pinc(ω)

M
∑

m=1

|Θm(ω)|
2. (16)

Naturally, for a given frequency, the capture factor (16) is maximum when
the absorbed power is maximised (Falnes, 2002; Mei et al., 2005; Cruz, 2008).
However, using the capture factor (16) to assess the behaviour of the sys-
tem at resonance has one major drawback. As already mentioned, the linear
theory would predict exceedingly large values of the Θm’s at resonance, so
that the capture factor (16) would be overestimated too, rising well above
unity (Folley et al., 2007). For this reason, within the framework of the
linearised theory, the capture factor (16) is as inappropriate as P (13) to
assess the performance of the system at motion resonance. On the contrary,
note that the absorption efficiency defined in Eq. (15) depends on the rel-
ative amplitudes of rotation of the absorbers (see also the examples in the
following), which are not affected by the resonant growth of the single Θm’s,
as shown in the following Section 4. This allows us to obtain realistic values
of QM also at resonance, thus permitting an extension of the linear the-
ory to investigate motion-resonant cases. Clearly, Eq. (15) only allows one
to perform a qualitative analysis of the system at motion resonance, whose
quantitative aspects should be examined further with an accurate numerical
simulation, e.g. with bespoke computational fluid dynamics (CFD) codes.
The latter can be designed to account for large oscillations and to reproduce
the associated dissipative vortex dynamics in detail (Rafiee and Dias, 2013;
Wei et al., 2013a,b; Bouscasse et al., 2013; Liu et al., 2014). Nevertheless,
Eq. (15) allows an initial assessment of the system resonant behaviour to be
made at much lower computational costs than CFD and as such is worth
investigating.

For example, in the case of one absorber, Eq. (15) provides very useful
analytical means to assess the effect of body resonance on the performance
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of the device. For M = 1 Eq. (15) simplifies as follows:

Q1 =

(

1 +
ν11(ω)

η(ω)

)−1

, (17)

which, for given η(ω), is independent of the angle of rotation of the flap. Now,
for a single absorber the expression of the PTO damping which optimises P
(13) is well-known to be (Falnes, 2002; Renzi and Dias, 2013b):

η(ω) =

√

[C − (I + µ11(ω))ω2]2

ω2
+ ν11(ω). (18)

Since η(ω) ≥ ν11(ω), then Eq. (17) yields Q1 ≥ 1/2 for a single absorber.
Furthermore, in the special case ω = ω0 (i.e. at body resonance, see Eq. (12)),
Eq. (17) together with (18) and (12) yield the minimum absorption efficiency

Q1(ω0) = 1/2. (19)

The latter expression physically means that, if tuned to resonance, a single
oscillator in the open ocean can absorb at most half of the total output power,
the other half being reintroduced in the fluid by its motion. This happens
since the larger amplitude of rotation at resonance increases not only the
power capture, but also the radiated power, which is an unwanted loss.

For multiple bodies (M > 1), Eq. (15) cannot be investigated analytically
and semi-analytical evaluation is necessary. In this case, the behaviour of
QM(ω) depends on the layout of the system, so that general conclusions on
the effect of motion resonance on the absorption efficiency cannot be made
a priori. In the following section we shall consider the case study of three
in-line flap-type absorbers under normally incident waves, which constitute
the basic cluster for more complex array developments. We shall show that
motion resonance is accompanied by a substantial loss of power in the ocean.

4. Numerical application

In this section we present a numerical application of the theoretical re-
sults of Section 2 and Section 3, considering a cluster of three in-line large
damped oscillators of the flap-absorber type. The geometry of the flaps is
reported in table 1. The spacing between the flaps is s′ = 10m, the waves
are normally incident on the system. Each oscillator resembles the geometry
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Flap width (m) Foundation height (m) Water depth (m)
w′ c′ h′

26 4 13

Table 1: Geometry of the 3-flap system analysed in Section 4. Each flap resembles the
geometry of the Oyster 800 WEC designed by Aquamarine Power.
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Figure 2: Solutions to Eq. (11) for the three-flap system of table 1.

and dimensions of the Oyster 800 WEC developed by Aquamarine Power.
The values of the moment of inertia I ′ and the buoyancy torque C ′ are ob-
tained by private communication with Aquamarine Power. As an order of
magnitude, I ′ = O(106) kgm2 and C ′ = O(107) Nm.

4.1. Natural modes

Figure 2 shows a plot of the characteristic equation (11) with respect
to the frequency ω for the system of table 1. Three roots of Eq. (11) are
found in the positive real axis, which correspond to the three distinct natural
frequencies of the system (eigenvalues). These are reported in table 2 together
with the corresponding modal profiles (eigenvectors) of the oscillators. Those
are the sought natural modes of the system and are sketched in figure 3. Note
that profile 2 is antisymmetric with respect to the centreline of the array,
while profiles 1 and 3 are symmetric. Note also that the largest relative
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i ωi T ′
p (s) Θ1(ωi) Θ2(ωi) Θ3(ωi)

1 0.4645 22.0270 1.00 1.39 1.00
2 0.4910 20.8350 1.00 0.00 −1.00
3 0.5135 19.9235 1.00 −1.40 1.00

Table 2: Natural frequencies, periods (in physical variables) and modes of oscillations for
the system of table 1.
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Figure 3: Modal profiles of the three-flap system of table 1 corresponding to the natural
frequencies of table 2 (online version in colour).

displacement between two neighbouring flaps occurs with profile 3, where
neighbouring oscillators move in out-of-phase fashion.

4.2. Wave power extraction

Here we shall analyse the performance of the system of oscillators when
they are used to extract energy from the waves. This corresponds to the
analysis of the full damped forced system of Eq. (8). Figure 4 represents the
behaviour of the absorption coefficient QM=3(ω) of Eq. (15) for the 3-flap
system described in table 1, under normally incident waves. For this system,
Eq. (15) simplifies to

Q3 =









1 +
2ν11 + 4ν12 cos(δ1 − δ2)

∣

∣

∣

Θ2
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,

which again depends on the relative amplitude of rotation |Θ2/Θ1|. The
latter is not affected by exceedingly large resonant peaks (see again figure
3). The curve of figure 4 shows two minima for the absorption coefficient
which are achieved close to the natural frequencies of the symmetric modes
1 and 3 depicted in figure 3, respectively ω1 and ω3 of table 2. When the
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Figure 4: Absorption efficiency QM (15) for a system of 3 in-line flap absorbers (M = 3)
under normally incident waves. The vertical dotted lines show the natural frequencies of
the system (see figure 2). Given the symmetry of the problem, only the symmetric natural
modes corresponding to ω1 and ω3 (see figure 3) are excited at resonance (online version
in colour).
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incident wave frequency is close to one of the resonant frequencies, the rel-
evant motion-resonant mode is excited resulting in loss of absorption effi-
ciency of the system. That is, the absorbers perform oscillations which not
only increase the power capture P but also largely enhance the power lost
by radiation W , so that overall the absorption efficiency (15) drops. Note
from figure 4 that the local minimum of Q3 near ω1 is about 1/2, i.e. it
almost corresponds to the minimum absorption efficiency of a single flap
tuned to body resonance (see Eq. 19). The absolute minimum of the Q3

coefficient is reached near the third natural frequency ω3. There, strong out-
of-phase oscillations are triggered (see panel 3 of figure 3) which enhance
the power lost by radiation, resulting in an inefficient functioning of the sys-
tem. Producing more energy waste in order to generate more power is both
a non-environmentally-sustainable cost and a non-optimal design principle.
It is then clear that motion resonance is to be avoided in the design of a
system of closely spaced, large flap-type absorbers. One viable alternative is
to employ a larger number of much smaller devices, in which case trapped
resonant modes can have a beneficial effect on the performance of the system
(Sammarco et al., 2014).

4.3. Influence of spacing on motion-resonant modes

Indeed the spacing between the absorbers plays an important role in in-
fluencing the motion-resonant behaviour of the system and requires further
investigation. Figure 5 shows several plots of the characteristic determinant
∆ (11) versus the frequency ω for the three-flap system of table 1. Each curve
refers to a specific value of the spacing s. The curve relevant to a single os-
cillator is also plotted, behaving almost as a straight line. The zero of this
curve is clearly the natural frequency ω0 (12) of a single body due to buoy-
ancy alone. Note from figure 5 that as s increases, the zeroes of ∆ become
closer and the curve flattens near them, expectedly converging to the curve
of the single oscillator. Now recall from Section 3 that the zeroes of ∆ are
the natural frequencies of the system. Hence the plots of figure 5 suggest a
converging asymptotic behaviour of the array natural frequencies ωi towards
the natural frequency ω0 (12) at large spacing. Such behaviour is further
confirmed by a quick asymptotic analysis of the characteristic equation (11)
at large s. For s > 1, it is expected that the mutual interactions between the
oscillators become weak (Renzi et al., 2014a), so that the reflexive hydrody-
namic terms become much larger than the mutual ones: |µαα| ≫ |µαβ|. This
is confirmed numerically by the plots of figure 6, which show the behaviour
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Figure 5: Plots of ∆ (11) versus ω for the three-flap system of table 1.Various spacings are
considered: s = 0.385 (s′ = 10m), s = 0.462 (s′ = 12m), s = 0.538 (s′ = 14m), s = 0.615
(s′ = 16m), s = 0.792 (s′ = 20m) and s = 1.154 (s′ = 30m). The central black line shows
the behaviour of ∆ for a single flap. The zeroes of ∆ identify the natural frequencies of
each system (online version in colour).
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Figure 6: Plots of the added-inertia matrix components µ′

αβ versus the period of oscillation
in physical variables for a system of three flap absorbers with spacing s′ = 30m. The
geometry of each flap is that of table 1, so that s = s′/w′ = 1.154. The numerical
calculations have been performed with the semi-analytical model of Renzi et al. (2014a).
Note that |µ′

αα| ≫ |µ′

αβ | and µ′

11
≃ µ′

22
at all periods (online version in colour).

of the added inertia terms versus the period of oscillation for a system of
largely spaced oscillators, in physical variables. As a consequence, at large s
the added-inertia matrix M can be approximated as a diagonal matrix and
the characteristic equation (11) yields simply

ωi ∼

√

C

I + µii

, i = 1, . . . ,M. (20)

Furthermore, since the added inertia terms µii naturally tend to equate the
added inertia µ11 of an isolated oscillator as s increases (see again figure 6,
where µ′

11 ≃ µ′
22), Eq. (20) finally yields

ωi ∼ ω0 =

√

C

I + µ11
, i = 1, . . . ,M, s → ∞. (21)

In conclusion, at large spacing the solutions of the characteristic equation (11)
converge towards a single eigenvalue (21) of algebraic multiplicity M , which
physically corresponds to the natural frequency of a single body (12). As a
consequence of this dynamics, at large spacing the multi-resonant behaviour
described in Section 3 is expected to be inhibited. The quantitative aspects of

18



"

#

$%

$&

%'

%"

'(" '(& '(# $(' $(% $(" $(& $(#

λ/
�

�

$

%

)

'('

'("

'(#

$(%

$(&

%('

'(" '(& '(# $(' $(% $(" $(& $(#

λ/
�
�

�

*+, *-,

Figure 7: Plots of (a) λi/s and (b) λi/(2b) versus the spacing s for the three-flap system
of table 1. Solid lines: i = 1; dashed lines: i = 2; dotted lines i = 3. In (b) the array full
length is b = 2s+ 3. All the curves eventually converge for s > 1.

this phenomenon can be further investigated by considering the ratio λ′
i/s

′ =
λi/s between the resonant wavelengths λi - each corresponding to the relevant
natural frequency ωi via the dispersion relation - and the spacing of the
oscillators. Figure 7(a) shows the behaviour of λi/s, i = 1, 2, 3, with respect
to the spacing s for the three-flap system under analysis. When s < 1,
the three curves can be distinguished neatly: the resonant wavelengths are
different and the system exhibits the multi-resonant behaviour discussed in
Section 3. As s increases, the three curves merge into a single one, due to the
convergence of the array resonant frequencies to the natural frequency of a
single oscillator (see figure 5 and Eq. (21)): the system loses its multi-resonant
characteristics. Figure 7(a) also shows that at small spacings the resonant
wavelengths are much larger than the spacing itself, i.e. λi/s ≫ 1. However,
with respect to the total width of the array b′, the resonant wavelengths
roughly satisfy λ′

i/(2b
′) = λi/(2b) ≃ 1, with b = b′/w′, as shown in figure 7(b).

This result can be explained by recurring to a simplified physical argument.
Consider for example the radiation problem in which flap 1 (the first from the
left) is oscillating at frequency ω and the other flaps are held fixed. A wave
crest radiated by such a flap reaches the furthest flap (i.e. flap 3) roughly
at time t1 ≃ kb/ω. Then it is partially scattered back towards the first flap.
The scattered wave crest will then reach flap 1 roughly at t2 ≃ 2kb/ω. If
t2 = T , then the scattered wave will superimpose with a new crest radiated
by the first flap, thus generating a strong resonant effect. Hence T ≃ 2kb/ω
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is the sought resonant condition, which then yields λ/(2b) ≃ 1. However,
when the spacing s is large, a single wave crest is not able anymore to travel
twice the distance b in one single period and the body-to-body resonant effect
is inhibited.

5. Conclusions

In this paper, we investigated a resonant phenomenon involving large ar-
ticulated damped oscillators under incoming waves in the open ocean, which
gives rise to multiple motion resonances in the low-frequency range. Two req-
uisites appear to be essential to excite such mechanism: (i) a close proximity
of the oscillators (i.e. s < 1) and (ii) low frequencies of the incident waves
(ω < 1). We showed that motion-resonant modes are responsible for strong
out-of-phase oscillations of the bodies. For the first time, we also demon-
strated that excitation of body-to-body resonances for a system of large ar-
ticulated damped oscillators in waves is detrimental to the efficiency of wave
energy absorption processes. Resonance produces more energy waste in or-
der to produce more power. That is both a non-environmentally-sustainable
cost for a renewable energy system. Our results, even in the limit of the
linear potential flow theory, provide a new insight on the dynamics of large
articulated damped oscillators, challenging the diffused belief that resonance
is always beneficial to the performance of flap-type converters.

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland under Grant Number SFI/10/IN.1
/I2996. Fruitful discussion with Professor P. Sammarco and Dr G. Bellotti
are kindly acknowledged. We acknowledge the useful comments of two anony-
mous referees.

Appendix A. Computational aspects

Numerical evaluation of the system of equations of motion (8) needs to be
performed in order to determine the dynamic response of a system of M os-
cillators. The added-inertia matrix M(ω) and the radiation damping matrix
N(ω) in Eq. (8) are determined for each frequency ω by integrating numer-

ically the radiation potentials φ
(m)
R over the surface of the oscillators, while

the exciting torque vector F is found by integrating the diffraction potential
φD. Convergence tests for non-resonant frequencies were already carried out
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successfully in Renzi et al. (2014a), where the results were also compared
satisfactorily with numerical data. In this paper, further convergence tests
were performed to validate the model near resonant frequencies. Numerical
integration was performed with a parallelised Mathematica R© code on a high-
speed computer equipped with an i7 3.40 GHz CPU and 16 GB RAM. An
adaptive algorithm was used for the numerical evaluation of the integrals.
The algorithm routinely subdivides the integration region until the error es-
timate achieves either the relative or the absolute tolerance required. In this
paper, the relative error has been set to default (10−7) and the absolute error
to 10−8. The maximum number of recursive subdivisions was set to 12 and
was always sufficient to achieve the desired precision without any conver-
gence warnings. Five vertical eigenmodes and eight Chebyshev polynomials
- i.e. a (5,8) configuration - were used. Convergence tests were undertaken
for the 3-flap system of table 1 to ensure the reliability of the numerical
calculations. Such layout was the most demanding in computational terms
among the layouts analysed in this paper. Results obtained in the reference
configuration (5,8) were compared against those obtained with a (5,10) and a
(6,8) configuration, respectively, and the relative errors were calculated. The
system was more sensitive to an increase in the number of Chebyshev poly-
nomials rather than of the vertical eigenmodes. Concerning the calculation
of the hydrodynamic terms F, M and N, the largest relative error occurred
near the resonant frequency ω3 and was O(10−5) for the added inertia µ11.
Concerning the amplitude vector Θ, solution of Eq. (8), the largest relative
error occurred again near the resonant frequency ω3 and was O(10−3) for
the angle Θ2. Hence the (5,8) configuration was safely adopted for all the
numerical calculations performed in this paper. Coherence tests were also
undertaken based on the reciprocity relations µαβ = µβα and ναβ = νβα. The
latter expressions were all satisfied in the (5,8) configuration with a maximum
relative error O(10−10).

References

Adamo, A., Mei, C.C., 2005. Linear response of Venice storm gates to inci-
dent waves. Proceedings of the Royal Society A 461, 1711–1734.

Babarit, A., 2010. Impact of long separating distances on the energy pro-
duction of two interacting wave energy converters. Ocean Engineering 37,
718–729.

21



Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M., 2013. Nonlinear
water wave interaction with floating bodies in SPH. Journal of Fluids and
Structures 42, 112–129.

Budal, K., 1977. Theory for absorption of wave power by a system of inter-
acting bodies. Journal of Ship Research 21, 248–253.

Cruz, J. (Ed.), 2008. Ocean Wave Energy. Springer.

Falnes, J., 1980. Radiation impedance matrix and optimum power absorption
for interacting oscillators in surface waves. Applied Ocean Research 2, 75–
80.

Falnes, J., 2002. Ocean Waves and Oscillating Systems. Cambridge Univer-
sity Press, Cambridge.

Farhat, M., Enoch, S., Guenneau, S., Movchan, A.B., 2010. Broadband cylin-
drical acoustic cloak for linear surface waves in a fluid. Physical Review
Letters 101, 134501.

Folley, M., Whittaker, T., Henry, A., 2007. The effect of water depth on the
performance of a small surging wave energy converter,. Ocean Engineering
34, 1265–1274.

Gallagher, S., Tiron, R., Dias, F., 2013. A detailed investigation of the
nearshore wave climate and the nearshore wave energy resource on the
west coast of ireland, in: Proceedings of the 32nd International Conference
on Ocean, Offshore and Arctic Engineering, OMAE2013, Nantes, France.

Heathershaw, A.D., 1982. Seabed-wave resonance and sandbar growth. Na-
ture 296, 343–345.

Hu, X., Chan, C.T., 2005. Refraction of water waves by periodic cylinder
arrays. Physical Review Letters 95, 154501.

Hu, X., Chan, C.T., Ho, K.M., Zi, J., 2011. Negative effective gravity in
water waves by periodic resonator arrays. Physical Review Letters 106,
174501.

Kreyszig, E., 2006. Advanced Engineering Mathematics. John Wiley and
Sons, Singapore.

22



Liu, X., Lin, P., Shao, S., 2014. An ISPH simulation of coupled structure
interaction with free surface flows. Journal of Fluids and Structures 48,
46–61.

Maniar, H.D., Newman, J.N., 1997. Wave diffraction by a long array of
cylinders. Journal of Fluid Mechanics 339, 309–330.

Mei, C., Sammarco, P., Chan, E.S., Procaccini, C., 1994. Subharmonic
resonance of proposed storm gates for Venice Lagoon. Proceedings of the
Royal Society A 444, 257–265.

Mei, C.C., Hara, T., Naciri, M., 1988. Note on Bragg scattering of water
waves by parallel bars on the sea bed. Journal of Fluid Mechanics 186,
147–162.

Mei, C.C., Stiassnie, M., Yue, D.K.P., 2005. Theory and Appliations of
Ocean Surface Waves. World Scientific, Singapore.

Porter, R., Evans, D.V., 1999. Rayleigh-Bloch surface waves along periodic
gratings and their connection with trapped modes in waveguides. Journal
of Fluid Mechanics 386, 233–258.

Rafiee, A., Dias, F., 2013. Numerical simulation of wave impact on an oscillat-
ing wave surge converter, in: Proceedings of the ASME 2013 32nd Interna-
tional Conference on Ocean, Offshore and Arctic Engineering OMAE2013,
Nantes, France.

Renzi, E., Abdolali, A., Bellotti, G., Dias, F., 2014a. Wave-power absorption
from a finite array of oscillating wave surge converters. Renewable Energy
63, 55–68.

Renzi, E., Dias, F., 2012. Resonant behaviour of an oscillating wave energy
converter in a channel. Journal of Fluid Mechanics 701, 482–510.

Renzi, E., Dias, F., 2013a. Hydrodynamics of the Oscillating Wave Surge
Converter in the open ocean. European Journal of Mechanics B/Fluids 41,
1–10.

Renzi, E., Dias, F., 2013b. Relations for a periodic array of flap-type wave
energy converters. Applied Ocean Research 39, 31–39.

23



Renzi, E., Doherty, K., Henry, A., Dias, F., 2014b. How does Oyster work?
The simple interpretation of Oyster mathematics. European Journal of Me-
chanics B/Fluids. http://dx.doi.org/10.1016/j.euromechflu.2014.03.007.

Renzi, E., Sammarco, P., 2010. Landslide tsunamis propagating around a
conical island. Journal of Fluid Mechanics 650, 251–285.

Ruan, Z., Fan, S., 2010. Superscattering of light from subwavelength nanos-
tructures. Physical Review Letters 105, 013901.

Sammarco, P., Michele, S., d’Errico, M., 2014. Flap gates farm: from Venice
lagoon defense to resonating wave energy production. Part 1. Natural
modes. Applied Ocean Research 43, 206–213.

Sammarco, P., Renzi, E., 2008. Landslide tsunamis propagating along a
plane beach. Journal of Fluid Mechanics 598, 107–119.

Sammarco, P., Tran, H.H., Gottlieb, O., Mei, C.C., 1997a. Subharmonic
resonance of Venice gates in waves. Part 2. Sinusoidally modulated incident
waves. Journal of Fluid Mechanics 349, 327–359.

Sammarco, P., Tran, H.H., Mei, C.C., 1997b. Subharmonic resonance of
Venice gates in waves. Part 1. Evolution equation and uniform incident
waves. Journal of Fluid Mechanics 349, 295–325.

Sarkar, D., Renzi, E., Dias, F., 2013. Wave power extraction by an oscillating
wave surge converter in random seas, in: Proceedings of the ASME 2013
32nd International Conference on Ocean, Offshore and Arctic Engineering
OMAE2013, Nantes, France.

Sarkar, D., Renzi, E., Dias, F., 2014. Modelling wave farms of oscillating
wave surge converters. Proceedings of the Royal Society of London A
20140118.

Stefanakis, T.S., Dias, F., Dutykh, D., 2011. Local run-up amplification by
resonant wave interaction. Physical Review Letters 107.

Thomas, G.P., Evans, D.V., 1981. Arrays of three-dimensional wave-energy
absorbers. Journal of Fluid Mechanics 108, 67–88.

24



Wei, Y., Rafiee, A., Dias, F., 2013a. On the viscous effects in the interaction
of water waves with an oscillating wave surge converter, in: Proceedings
of the 10th European Wave and Tidal Energy Conference, EWTEC13,
Aalborg, Denmark.

Wei, Y., Rafiee, A., Elsaesser, B., Dias, F., 2013b. Numerical simulation of
an oscillating wave surge converter, in: Proceedings of the ASME 2013
32nd International Conference on Ocean, Offshore and Arctic Engineering
OMAE2013, Nantes, France.

Whittaker, T., Folley, M., 2012. Nearshore oscillating wave surge converters
and the development of Oyster. Philosophical Transaction of the Royal
Society A 370, 345–364.

25


