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Introduction

We present a second-order nonlinear theory for a gate-type Wave Energy Converter (WEC) in a semi-infinite bi-
dimensional channel. The gate model is similar to that shown in [1], except for a generalized weak displacement
of the gate wetted surface about the vertical. Both free surface elevation and gate vertical displacement
are assumed small if compared to the channel depth. Hence, the boundary conditions on the gate can be
conveniently Taylor-expanded about the vertical. Perturbation-harmonic expansion allows us to decompose
the nonlinear governing equations in a sequence of linear boundary-value problems of order n and harmonic
m. Then, we show that the effect of the gate shape forces the first-harmonic component at the second order
only. We also show that hydrodynamic interactions between the curved gate and short waves can have either
constructive or disruptive effects in terms of power absorption.

Mathematical model

With reference to Figure 1(a), consider a semi-infinite channel of constant depth h′ and width w′. Define a
Cartesian reference system (x′, z′) with the x′ axis lying on the undisturbed free surface level and the z′ axis
pointing upward. Primes indicate physical variables. At x′ = 0 rests a gate-type WEC of mass M ′, allowed
to oscillate horizontally along the channel without friction, under the action of incident harmonic waves. The
WEC is connected with a wall by a spring-damper system in parallel. The spring has elastic constant C ′, while
the linear damper, which simulates a power take-off (PTO) system, has PTO coefficient ν ′pto. Hence the PTO
exerts a force proportional to the gate velocity. The fluid is assumed inviscid and incompressible and the flow
irrotational. As a consequence, the velocity field satisfies the Laplace equation in the fluid domain Ω (x′, z′) for
the velocity potential Φ′ (x′, z′, t′). Let us assume the following equation for the wetted gate surface

f ′
(
x′, z′, t′

)
= x′ − δ′

(
z′
)
−X ′

(
t′
)

= 0, (1)

where δ′ denotes the deviation of the gate surface about x′ = 0, while X ′(t′) indicates the displacement
depending on time t′, positive rightward. Suppose that the mean of δ′ has zero value. Let A′ be the amplitude
of the incident waves, ω′ the incident wave frequency and g′ the acceleration due to gravity. Then introduce
the following non-dimensional quantities (see also [2]):

(x, z) =
(x′, z′)

h′
, Φ =

Φ′

A′ω′h′
, ζ =

ζ ′

A′
, t = t′ω′, δ =

δ′

δ′g
, X =

X ′

A′
, G =

g′

ω′2h′
, (2)

where ζ ′ is the free surface elevation, δ′g the length scale for δ′ and G the non-dimensional frequency. Moreover
we introduce the following two length ratios: ε = A′/h′ � 1, µ = δ′g/h

′ � 1. Let us assume the following
perturbation expansion for the non-dimensional unknowns up to second order O (ε):

{Φ, ζ,X} =
2∑

n=1

εn−1 {Φn, ζn, Xn} . (3)

Using the latter expansion, together with the quantities defined by (2), yields a non-dimensional form of the
Laplace governing equation and a no-flux boundary condition at the bottom:

∇2Φn = 0, (x, z) ∈ Ω; Φnz = 0, z = −h, (4)

where the x, z, t subscripts denote differentiation with respect to the relevant variable. Taylor expansion of the
boundary conditions about z = 0 gives the free-surface dynamic condition:

−Gζn = Bn; B1 = Φ1t , B2 = Φ2t + ζ1Φ1tz , z = 0, (5)
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and the free surface mixed condition:

Φntt +GΦnz = Fn; F1 = 0, F2 = −
[
ζ1 (Φ1ttz +GΦ1zz) + |∇Φ1|2t

]
, z = 0. (6)

Similarly, the kinematic boundary condition on the gate surface can be Taylor-expanded about x = 0:

Φnx = Xnt + Gn; G1 = 0, G2 = −Φ1xx

[µ
ε
δ +X1

]
+ Φ1z

µ

ε
δz, x = 0. (7)

Finally, the equation of motion of the gate can be written as:

MXntt +GCXn + νptoXnt =

∫ 0

−1
dzΦnt +Dn, (8)

D1 = 0, D2 =

∫ 0

−1
dz

{
Φ1tx

[µ
ε
δ +X1

]
+

1

2
|∇Φ1|2

}
+
G

2
ζ21 + Φ1tζ1. (9)

in which M = M ′/(ρ′h′2w′) is the non-dimensional mass, C = C ′/(ρ′g′h′w′) the non-dimensional elastic
constant, νpto = ν ′pto/(ρ

′ω′h′2w′) the non-dimensional PTO-coefficient and ρ′ the water density. Because of
harmonic motion, higher-order solutions imply higher harmonics. Hence, return in physical variables, omit the
primes for convenience and assume the following harmonic expansion [2]:

{Φn, ζn, Xn} =
n∑

m=0

{φnm, ηnm, Xnm} e−imωt + ∗, (10)

where the symbol ∗ indicates the complex conjugate. Substitution of the latter expansion into the governing
equation and boundary conditions gives a sequence of linear boundary problems of order n and harmonic m.

Leading order problem O (1)

Performing harmonic expansion (10) of the governing equations, we obtain that the zeroth harmonic problem
at the leading order is unforced with homogeneous Neumann boundary conditions, hence φ10 = 0. The incident
wave field is assumed to be at the leading order O (1). As a result, this is a well-known diffraction problem
forced by the incident wave field. The resulting velocity potential reads:

φ11 = − igA

ω

cosh k0 (h+ z)

cosh k0h
cos k0x−

∞∑
n=0

ωX11Dn

knCn
cosh kn (h+ z) eiknx, (11)

where the first term on the right represents the diffraction (incident + reflected) potential, while the second
term the radiation potential due to body motion. In (11), the kn’s denote the roots of the dispersion relation

ω2 = gk0 tanh k0h, ω
2 = −gkn tan knh, kn = ikn, n = 1, 2, . . . (12)

while the coefficients Cn, Dn correspond to:

Cn =

∫ 0

−h
dz cosh2 kn (h+ z) =

1

2

(
h+

g

ω2
sinh2 knh

)
, Dn =

∫ 0

−h
dz cosh kn (h+ z) =

sinh knh

kn
. (13)

The gate response is finally given by

X11 = − AρgwD0/ cosh k0h

−ω2M + C − iωνpto − iω2ρw
∑∞

n=0
D2

n
knCn

. (14)

Second order problem O (ε)

At this order we obtain a zeroth-harmonic drift, plus two harmonics ω and 2ω forced by quadratic products of
the leading order solution O (1). The bound wave and the static displacement have expressions:

η20 =
1

gε

(
2ω2 |η11|2 − |∇φ11|2

)
, X20 = −ρw

εC

(
ω2h |X11|2 + g |η11|2

)
. (15)



The related velocity potential φ20 differs from zero and is forced both on the free surface and on the gate.
However, it does not affect energy extraction and will be evaluated in future work. Effects of the gate shape
on the total wave field influence the first harmonic solution only. In particular, we have:

φ21 =
∞∑
n=0

(
−X21Dnω

Cnkn
+

Ψn

ε

)
eiknx cosh kn (z + h) , Ψn =

i

knCn

∫ 0

−h
dz cosh kn (z + h) {φ11xxδ − φ11zδz} .

(16)
The corresponding displacement is given by:

X21 = −
iωρw

[∑∞
n=0 ΨnDn +

∫ 0
−h dz φ11xδ

]
ε
(
−Mω2 + C − iωνpto − iω2ρw

∑∞
n=0

D2
n

Cnkn

) . (17)

The numerator of (17) is the complex exciting torque, and represents the effect of the vertical profile of the gate.
Note that, for a flat gate with δ = δz = 0, the displacement X21 becomes null. The denominator of expression
(17) is made by terms that do not depend on the gate shape. Hence the displacement X21 is maximum if the
exciting torque function is maximized accordingly.

The second harmonic boundary-value problem presents the following inhomogeneous forcing terms, respec-
tively, on the free surface and on the gate surface:

φ22z =
4ω2φ22
g

− iω

gε

[
φ11
g

(
−ω2φ11z + gφ11zz

)
− 2 |∇φ11|2

]
, φ22x = −2iωX22 +

1

ε
φ11xxX11. (18)

Linearity allows decomposition of the velocity potential, i.e. φ22 = φS22 + φF22, in which φS22 represents the
solution with homogenized condition on the gate, while φF22 is the velocity potential solution with homogenized
condition on the free surface. Solution can be found by the eigenfunction expansion method (see also [2]).
After some lengthy but straightforward algebra we obtain:

φS22 =
∞∑
l=0

coshκl (z + h)
coshκlh

gκlCl

{
Γ1

(
− 1

2κl
− κl cos 2k0x

−8k20 + 2κ2l

)
+ Γ2

eiκlx (km + kn)− ei(km+kn)xκl

κ2l − (km + kn)2

+Γ3
eiknxκl

(
k20 − κ2l + k2n

)
cos k0x+ kn

[
eiκlx

(
k20 + κ2l − k2n

)
− 2ieiknxk0κl sin k0x

][
k20 − (κl + kn)2

] [
k20 − (κl − kn)2

] + Γ4

(
− 1

2κl
+

κl cos 2k0x

−8k20 + 2κ2l

)

+Γ5
eiknxκl

(
k20 − κ2l + k2n

)
sin k0x+ k0

[
−ieiκlx

(
−k20 + κ2l + k2n

)
+ 2ieiknxknκl cos k0x

][
k20 − (κl + kn)2

] [
k20 − (κl − kn)2

]
 , (19)

where κl are the real roots of the dispersion relation

4ω2 = gκ0 tanhκ0h, 4ω
2 = −gκl tanκnh, κl = iκl, l = 1, . . . ,∞, (20)

while the Γ-terms have expressions

Γ1 =

(
Ag

ω

)2(
iωk0 −

3iω5

g2

)
, Γ2 = ω2X2

11

∞∑
n=0

∞∑
m=0

DnDm cosh knh cosh kmh

CnCmknkm

(
3iω5

g2
− 2iωknkm − iωk2n

)
,

Γ3 = −AgX11ω
∞∑
n=0

Dn cosh knh

Cnkn

(
6ω4

g2
− k20 − k2n

)
,Γ4 = −2iA2g2k20

ω
,Γ5 = 4iAgX11ωk0

∞∑
n=0

Dn cosh knh

Cn
.

(21)

The velocity potential due to forcing on the gate surface reads

φF22 = −
∞∑
l=0

(
2ωX22Dl

κlCl
+

∆l

ε

)
eiκlx coshκl (h+ z) , ∆n = − i

κlCl

∫ 0

−h
dz coshκl (z + h)φ11xxX1, (22)

in which Cl and Dl have the form (13) with wavenumber κl. Finally the gate response X22 is

X22 =
ρw
{
−2iω

[∫ 0
−h dz φS22

∣∣
x=0
−
∑∞

l=0 ∆lDl

]
+
∫ 0
−h dz

[
−iωφ11xX11 +

∇φ11·∇φ∗11
2

]
− gη211

2

}
ε
(
−4Mω2 + C − 2iωνpto − 4iω2ρw

∑∞
l=0

D2
l

Clκl

) . (23)
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Figure 1: (a) Geometry of the system in physical variables; (b) Ratio between the capture factor CF of each
configuration and the capture factor of a vertical flat-gate CF0

Results and discussions

Since the gate response is X = (X11 + εX21) e
−iωt + εX22e

−2iωt + ∗, the average extracted power becomes

P = lim
τ→∞

1

τ

∫ τ

0
dt

(
dX

dt

)2

νpto = 2ω2νpto

(
|X11 + εX21|2 + 4 |εX22|2

)
. (24)

The efficiency of the system is finally assessed by considering the capture width ratio CF defined as the ratio
between the extracted power P and the incident wave energy flux per channel width w [1]. Now, let us compare
the flat-gate (δ = 0) with four different gate configurations, respectively

δ1 = Ag sin
π (z + h)

h
, δ2 = −Ag sin

π (z + h)

h
, δ3 = Ag

2z + h

h
, δ4 = −Ag

2z + h

h
, (25)

where the water depth is h = 10 m and the maximum gate displacement is Ag = h/10. Let us assume the
eigenfrequency of the system equal to ω = 1 rad s−1 and the amplitude of the incident waves A = h/10.
The power generated at O (1) is maximized by assuming the PTO coefficient equal to the radiation damping
in resonance conditions, i.e νpto = 7.9 · 104 kg m2 s−1. Figure 1(b) shows the ratio between CF of each
gate configuration and the capture factor of the flat-gate CF0. Note that the curves cross each other in
correspondence of the resonance frequency ω = 1 rad s−1. At low frequencies the effect of a vertical displacement
is small. Constructive or destructive effects due to the vertical displacement δ arise mainly at large frequencies.
Configurations 2 and 3 are more efficient than the flat gate, especially at large frequencies ω > 1.5 rad s−1.
The least beneficial effects occur in Configuration 1. It should be noted that the optimization process depends
on a large number of parameters even though the analytical model is 2-D. Work is currently in progress to use
genetic algorithms able to search a family of vertical shapes which maximizes power output. Finally, we remark
that this analytical model constitutes the basis for investigating nonlinear resonance phenomena occurring in
more complex systems ([2, 3, 4]).
The work of S.M. is supported by a Royal Society - CNR International Fellowship.
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