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A mathematical model is developed to study the behaviour of an oscillating wave energy
converter in a channel. During recent laboratory tests in a wave tank, peaks in the hydro-
dynamic actions on the converter occurred at certain frequencies of the incident waves.
This resonant mechanism is known to be generated by the transverse sloshing modes of
the channel. Here the influence of the channel sloshing modes on the performance of the
device is further investigated. Within the framework of a linear inviscid potential-flow
theory, application of the Green theorem yields a hypersingular integral equation for the
velocity potential in the fluid domain. The solution is found in terms of a fast-converging
series of Chebyshev polynomials of the second kind. The physical behaviour of the sys-
tem is then analysed, showing sensitivity of the resonant sloshing modes to the geometry
of the device, that concurs in increasing the maximum efficiency. Analytical results are
validated with available numerical and experimental data.
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1. Introduction

Renewed interest in wave power extraction has arisen in the recent years, following the
need for clean energy resources alternative to fossil fuels. As a consequence, a lot of work
has been done recently to discover effective design layouts for wave energy converters
(see McCormick 2007; Cruz 2008, for an extensive review of wave energy conversion
techniques). The work of Folley et al. (2005) and Whittaker et al. (2007) on a number
of different devices showed that an effective solution to harness energy from water waves
is represented by oscillating wave energy converters. Their simplest form is that of a
buoyant flap hinged at the bottom of the ocean and has been named Oscillating Wave
Surge Converter (OWSC). Under the action of incoming incident waves, the flap is forced
to a pitching motion about the hinge, that is eventually converted into energy with
the use of a generator. The converter is naturally placed in shallow waters, where the
pitching of the flap combines well with the amplified horizontal motion (surge) of the fluid
particles (hence the name OWSC). During the wave tank tests of Whittaker et al. (2007),
Henry (2008) and van’t Hoff (2009), peaks in the hydrodynamic actions on the converter
occurred at certain frequencies of the incident waves. This resonant phenomenon is known
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to be due to the excitation of the transverse sloshing modes of the channel (Shemer et al.
1987). However, there is still uncertainty on how the resonant transverse waves interact
with the device and affect its efficiency (van’t Hoff 2009). Here we address this unresolved
issue by developing a three-dimensional mathematical model of an oscillating wave energy
converter, namely the OWSC, inside a channel. Although much analytical modelling has
been done for a large number of wave energy converters (WECs) (see Falnes 2002; Mei
et al. 2005; McCormick 2007, for a collection of theories on WECs), few analytical studies
are available in the literature concerning OWSCs.
Indeed, the hydrodynamics of flaps has been widely studied in the past due to their

usage as wavemakers (see Dean & Dalrymple 1991, for a compendium of wavemaker
theories), with Milgram (1970) being among the first to suggest the employment of a
moving paddle not only as a wave generator, but also as a wave energy absorber. Later on,
the hydrodynamic characteristics of flat plates have been studied by Parsons & Martin
(1992, 1994, 1995) and more recently by Evans & Porter (1996) for both submerged
and surface-piercing plates. In particular, the work of Parsons & Martin (1992) is a
seminal example of the application of hypersingular integral equations to problems in
water waves. Nevertheless, all these analytical studies deal with two-dimensional (2D)
geometries. Hence they are inadequate to describe the complex three-dimensional (3D)
behaviour of the wave field around the flap noticed in the experimental analysis of the
OWSC. A non-linear 3D analytical model has been developed by Mei et al. (1994) and
Sammarco et al. (1997) for the flap gates of the barriers designed to protect Venice from
flooding. Mei et al. (1994) and Sammarco et al. (1997) showed that trapped modes exist
near a barrier of oscillating flaps in a channel. Since the narrowly spaced flaps span
the whole channel width, this system is closed and can resonate only subharmonically
(i.e. non-linearly). The work of Sammarco et al. (1997) aims at reducing the resonant
effects that could lead to undesired large oscillations of the flaps, thus undermining the
effectiveness of the barrier.
Going back to wave energy, a wise design of the OWSC should exploit the beneficial

effect of resonance in enhancing the amplitude of oscillation of the flap, thus allowing
to capture more wave power. For bodies of various geometries in a channel, Eatock
Taylor & Hung (1985), Yeung & Sphaier (1989), Linton & Evans (1992) and Chen (1994)
already showed that linear resonance mechanisms influence the radiation and diffraction
properties significantly. This influence manifests itself by the presence of peaks in the
hydrodynamic characteristics of the system, at periods corresponding to the resonance
of symmetric transverse standing waves within the channel lateral walls. As already
mentioned, similar dynamics has been shown to occur also during wave tank tests of
the OWSC, rising the following questions: (i) how linear resonance of transverse waves
is triggered for a typical OWSC configuration in a channel, (ii) how do the transverse
sloshing modes interact with the OWSC and modify its performance, and (iii) to what
extent the results obtained in an experimental wave tank can be applied to predict the
behaviour of the device in the open ocean.
A mathematical model of the OWSC in a channel is developed in the following sections

to address the above points. The fluid is assumed to be inviscid and incompressible, the
flow irrotational, the perturbation time harmonic. In §2 the governing equations are
scaled and linearised according to first-order potential flow theory. The hydrodynamic
problem is then decomposed into a radiation and a diffraction problem, which are solved
separately using the hypothesis of thin plate and eventually summed up to obtain the
total potential. The solution is achieved with the integration of a hypersingular problem,
resulting from the application of the Green theorem to the physical domain. In §3 the
hydrodynamic characteristics of the system, such as the excitation torque, added inertia
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Figure 1. Geometry of the converter and the channel: (a) section, (b) plan view.

torque and radiation damping are fully investigated and the efficiency of the OWSC is
assessed. Analytical results agree well with available numerical and experimental data.
It is shown that all the above quantities are characterised by the occurrence of spikes
at the cut-off frequencies of the transverse sloshing modes. The latter are excited in the
channel by the diffraction of the incident wave field at the edges of the flap and influence
the performance of the OWSC. Finally, a parametric analysis reveals how the transverse
modes can increase the efficiency of the device, depending on the geometry of the system.

2. Analytical model

2.1. Governing equations

Referring to figure 1(a, b), consider an OWSC in water of depth h′, where the prime
indicates a physical dimensional quantity. For the sake of generality, we shall represent
the converter by a rectangular flap of width w′ and thickness 2a′, hinged along a straight
axis upon a rigid platform, at a distance c′ from the bottom of the ocean (see figure 1a, b).
The device is located in the middle of a straight channel, whose impermeable walls are
placed at a mutual distance b′ and extend to infinity to either side (see figure 1b). Incident
waves are coming from the right with wave crests parallel to the OWSC and set the flap
into an oscillating motion. This is eventually converted into useful energy by means of a
generator linked to the device. Note that, due to the mirroring effect of the side walls,
the layout of figure 1(b) can also be employed to model the behaviour of an infinite
array of identical OWSCs in the open ocean, subject to beam seas. The converters in
this array have spatial period b′ and oscillate at unison. Returning to the channel layout,
let us now define a plane reference system of coordinates x′ = (x′, y′, z′). Let x′ lie on
the centre line of the channel, y′ along the axis of the OWSC at rest position and z′

rise up from the undisturbed water level z′ = 0, positive upwards. The flap is able to
oscillate on the vertical plane (x′, z′) about the horizontal axis at (x′, z′) = (0,−h′ + c′),
thus representing a system with one degree of freedom, i.e. pitch. Its time-dependent
amplitude of rotation θ′ = θ′(t′) is defined positive if counter-clockwise; t′ denotes time.
We also assume that the bottom foundation does not oppose the flap movement (ideal
foundation, see Sammarco 1996) and that the hinge is frictionless. As in many gravity-
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wave problems (see for example Mei et al. 2005) the fluid is deemed to be inviscid and
incompressible and the flow irrotational. Hence there exists a potential Φ′(x′, y′, z′, t′)
for the velocity field v′ = ∇′Φ′, where ∇′(·) = {(·),x′ , (·),y′ , (·),z′} is the nabla operator.
Subscripts with commas denote differentiation with respect to the relevant variable. The
complete set of nonlinear equations governing the system is detailed in Appendix A.
Since the resonance of the channel sloshing modes is a linear phenomenon (Shemer et al.
1987), here we shall consider a linearised theory. The first-order analysis presented in this
paper constitutes the basis for further investigation of higher-order phenomena occurring
in the system (see §3). Now let A′ denote the amplitude scale of the wave field and g the
acceleration due to gravity. Then introduce the following non-dimensional variables

(x, y, z) = (x′, y′, z′)/b′, t =

√
g

b′
t′, ζ = ζ ′/A′, Φ =

(√
gb′A′

)−1

Φ′, θ = θ′/ϵ, (2.1)

where ϵ = A′/b′ is the physical scale of the angular rotation, and constants

(h, a, w) = (h′, a′, w′)/b′. (2.2)

The linear governing equations are derived in the limit of small-amplitude oscillations of
the flap, i.e. ϵ ≪ 1, by considering the terms O(1) in the fully nonlinear system (A2)–
(A 10) scaled according to (2.1). The potential is governed by the Laplace equation

∇2Φ = 0, (x, y, z) ∈ Ω (2.3)

where Ω is the fluid domain. On the free-surface, the kinematic-dynamic boundary con-
dition reads

Φ,tt +Φ,z = 0, z = 0. (2.4)

The no-flux conditions on the solid boundaries require

Φ,y = 0, y = ±1/2 (2.5)

on the channel lateral walls and

Φ,z = 0, z = −h (2.6)

on the bottom. Allowing only tangential motion along the lateral surfaces of the OWSC
yields

Φ,x = −θ,t(t) (z + h− c)H(z + h− c), x = ±a, −w/2 < y < w/2, (2.7)

where H denotes the Heaviside step function. Finally the linearised equation of motion
of the flap reads

Iθ,tt(t) +Cθ(t) = −
∫ 0

−h+c

∫ w/2

−w/2

[Φ,t(a, y, z, t)− Φ,t(−a, y, z, t)] (z + h− c) dydz + Tϵ(t),

(2.8)
where C = wa(h − c)2 − S is the elastic moment of inertia due to net buoyancy, S =
S′/(ρb′4) and I = I ′/(ρb′5) are respectively the first and second moment of inertia of the
flap and Tϵ = T ′

ϵ /(ρgb
′4) is the first-order torque exerted by the generator on the flap,

all in non-dimensional variables; ρ is water density. Without loss of generality, we shall
assume Tϵ to depend on time via θ(t) and to be partly inertial, partly elastic and partly
damping (see Mei et al. 2005, for a similar example)

Tϵ(t) = −µpto θ,tt(t)− Cpto θ(t)− νpto θ,t(t). (2.9)

In the latter expression µpto and Cpto are respectively the inertial and elastic characteris-
tic of the generator, while νpto is the energy extraction rate. Now note that the physical
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scale of the OWSC width is a′ = O(A′) (Henry 2008), so that a = a′/b′ = O(ϵ) ≪ 1.
Hence the thickness of the OWSC can be neglected if compared to the reference length
scale b′ and the hypothesis of thin obstacle (Linton & McIver 2001) can be applied to
evaluate the potential Φ. As a consequence, a = 0 in the boundary condition on the
lateral surfaces (2.7) and in the right-hand side of the equation of motion (2.8).

2.2. Solution of the radiation and scattering problems

In this section solution is found to the Laplace equation (2.3) with linearised boundary
conditions (2.4) on the free-surface, (2.5) on the channel walls, (2.6) on the bottom and
(2.7) on the flap lateral surfaces. Once having solved this system, expression (2.8) will
be employed to determine the motion of the flap. Assume that the flap undergoes simple
harmonic oscillations of frequency ω = ω′

√
b′/g about its rest position, so that

θ(t) = Re
{
Θe−iωt

}
, (2.10)

where Re is the real part and Θ the complex amplitude of rotation. Position (2.10) allows
to separate the time factor in the time-dependent variables, so that the velocity potential
can be rewritten as

Φ(x, y, z, t) = ϕ(x, y, z) e−iωt, (2.11)

where the symbol Re is omitted for the sake of brevity. Due to the linearity of the
problem, the spatial potential ϕ is analysed by resorting to the classical decomposition
(see for example Linton & McIver 2001; Mei et al. 2005)

ϕ = ϕR + ϕS . (2.12)

In the latter, ϕR is the solution of the radiation problem, in which the flap is set to oscil-
late without incoming incident waves, and ϕS is the solution of the scattering problem,
where the flap is held fixed in incoming waves. In turn, the scattering potential can be
decomposed into

ϕS = ϕI + ϕD, (2.13)

where

ϕI(x, y, z) = − iA0

ω cosh kh
cosh k(z + h)e−ikx (2.14)

is the potential of the incident wave and ϕD the potential of the diffracted waves (see
Linton & McIver 2001; Mei et al. 2005). In (2.14) A0 and k are respectively the non-
dimensional incident wave amplitude and wavenumber, the latter depending on the wave
frequency according to the dispersion relation ω2 = k tanh kh. In the following, the
radiation and scattering problems will be investigated and their results summed up to
obtain the total wave field.
The boundary-value problems for the radiation potential ϕR and the diffraction po-

tential ϕD can be determined by employing the factorizations (2.10)–(2.11) and the
decompositions (2.12)–(2.13) into the governing equations (2.3)–(2.7). As a consequence,
ϕR and ϕD must satisfy the Laplace equation

∇2ϕ(R,D) = 0, (x, y, z) ∈ Ω, (2.15)

where the shorthand notation ϕ(R,D) denotes either potential, the kinematic-dynamic
boundary condition on the free-surface

ϕ(R,D)
,z − ω2ϕ(R,D) = 0, z = 0, (2.16)

the no-flux condition on the bottom

ϕ(R,D)
z = 0, z = −h (2.17)
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and on the channel walls

ϕ(R,D)
,y = 0, y = ±1/2 (2.18)

and the kinematic conditions on the lateral surfaces of the flap{
ϕR
,x

ϕD
,x

}
=

{
iωΘ(z + h− c)H(z + h− c)

−ϕI
,x

}
, x = ±0, −w/2 < y < w/2. (2.19)

Finally, ϕ(R,D) must be outgoing at large |x|. Separation of variables

ϕ(R,D)(x, y, z) =

∞∑
n=0

φ(R,D)
n (x, y)Zn(z), n = 0, 1, 2, . . . , (2.20)

yields the well-known vertical eigenmodes (see for example Mei et al. 2005)

Zn(z) =

√
2 coshκn(z + h)(

h+ ω−2 sinh2 κnh
)1/2 , n = 0, 1, 2, . . . , (2.21)

which satisfy the orthogonality relation∫ 0

−h

Zn(z)Zm(z) dz = δnm, (2.22)

δnm being the Kronecker delta, n,m ∈ N. In Zn (2.21)

κ0 = k, κn = ikn, n = 1, 2, . . . (2.23)

are the solutions of the dispersion relationships

ω2 = k tanh kh, ω2 = −kn tan knh, n = 1, 2, . . . (2.24)

respectively. Hence an equivalent form of (2.21) for n > 0 is Zn =
√
2 cos kn(z + h)/(h−

ω−2 sin2 knh)
1/2, i.e. an oscillating function of z. By making use of (2.20) and (2.21), the

Laplace equation (2.15) becomes(
∇2 + κ2

n

)
φ(R,D)
n = 0, (x, y) ∈ Σ, (2.25)

governing the plane radiation and diffraction potentials φ
(R,D)
n (x, y) in the 2D fluid do-

main Σ (see figure 1), where n = 0, 1, 2, . . . will be omitted from now on for brevity.
Note that (2.25) is an ordinary Helmholtz equation when n = 0, for which κ2

0 = k2, and
a modified Helmholtz equation when n > 0, for which κ2

n = −k2n. With the same steps
as above, the no-flux condition on the channel walls (2.18) gives

φ(R,D)
n,y = 0, y = ±1/2. (2.26)

Now consider the kinematic conditions on the flap (2.19). Using the factorization (2.20),
multiplying both sides by Zm, integrating along the vertical line from z = −h to z = 0
and using the orthogonality relation (2.22) yields{

φR
n,x

φD
n,x

}
=

{
V fn
A0 dn

}
, x = ±0, −w/2 < y < w/2. (2.27)

In the latter expression

V = iωΘ (2.28)
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is the complex angular velocity of the flap, while

fn =

√
2 [κn(h− c) sinhκnh+ coshκnc− coshκnh]

κ2
n

(
h+ ω−2 sinh2 κnh

)1/2 (2.29)

and

d0 =
k
(
h+ ω−2 sinh2 kh

)1/2
√
2ω cosh kh

, dn = 0, n = 1, 2, . . . (2.30)

are real constants depending on the modal order n. Finally φ
(R,D)
n must be outgoing dis-

turbances along the channel. In summary, the 2D n-th mode potentials φ
(R,D)
n must solve

the Helmholtz equation (2.25) with the boundary conditions (2.26)–(2.27) and be outgo-
ing. Here we shall solve this boundary-value problem by employing an integral-equation
method based on the application of Green’s theorem with an appropriate channel Green
function. In the literature Achenbach & Li (1986) and Martin & Rizzo (1989) already
used a similar procedure to solve plane sound-wave problems, while Parsons & Martin
(1992, 1994, 1995) applied this method to the scattering and trapping of surface waves by
plates. Later, Martin & Farina (1997) used the integral-equation approach to solve the
radiation problem for a heaving submerged horizontal disc, but without bounding walls
and in water of infinite depth. In this paper, the boundary-value problem (2.25)–(2.27)
is solved in Appendix B by applying an integral-equation technique based on the decom-
position of the Green function into a singular part and an analytical remainder. Such a
procedure is inspired by Chen (1994)’s analysis of the tank Green function for numerical
models. The integral-equation technique allows to solve the plane boundary-value prob-

lems for φ
(R,D)
n and ultimately to express the potentials ϕ(R,D) (2.20) in an appealing

fast-converging semi-analytical form (see Appendix B for details). The radiation potential
is given by

ϕR(x, y, z) = − iwV

8

∞∑
n=0

κnxZn(z)
M∑
p=0

α(2p)n

+∞∑
m=−∞

∫ 1

−1

(
1− u2

)1/2
U2p(u)

×
H

(1)
1

(
κn

√
x2 + (y − 1

2wu−m)2
)

√
x2 + (y − 1

2wu−m)2
du, (2.31)

where H
(1)
1 is the Hankel function of the first kind and first order and the U2p are the

Chebyshev polynomials of the second kind and order 2p, p = 0, 1 . . .M ∈ N. Finally, the
α(2p)n are the complex solutions of the linear system of equations (B 23) which ensures
that the boundary condition on the plate (2.27) is satisfied. This system is solved numer-
ically with a collocation scheme (see again Appendix B), therefore the solution is partly
numerical. Note that the radiation potential (2.31) is an odd function of x, as suggested
by the antisymmetric pitching motion of the flap. Physically, (2.31) represents the sum of
outgoing waves within the waveguides imposed by the lateral walls and is similar in form
to the solutions of other problems of water waves propagating past sharp obstacles (see
for example Evans & Porter 1997; Lovas et al. 2010, who also employ Chebyshev poly-
nomials). The inner series in (2.31) represents a sum of disturbances radiated by sources
arranged periodically along the y axis and converges as m−3/2 for large m. Numerically,
summation from m = −20 up to m = 20 ensures convergence of the series with relative
error O(10−3) close to resonance and O(10−4) elsewhere. The central series in (2.31) is
truncated at M < ∞ and its coefficients are calculated numerically as described in Ap-
pendix B. Numerical investigation showed that M > 4 is sufficient to ensure convergence
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with virtually no relative error. The outer series in (2.31) over the vertical eigenmodes
was found to converge quickly already for n = 4 with a relative error O(10−5). Hence the
method of solution adopted here, based on the appropriate decomposition of the Green
function (B 4)–(B 6), proves to be reliable and computationally efficient. Turning to the
scattering problem, the diffraction potential is given by

ϕD(x, y, z) = − iwA0

8
kxZ0(z)

M∑
p=0

β(2p)0

+∞∑
m=−∞

∫ 1

−1

(
1− u2

)1/2
U2p(u)

×
H

(1)
1

(
k
√

x2 + (y − 1
2wu−m)2

)
√
x2 + (y − 1

2wu−m)2
du. (2.32)

In the latter expression the β(2p)0 are the complex solutions of the linear system of
equations (B 23) for n = 0, which ensures that the no-flux condition on the flap (2.19)
is satisfied. Thanks to linearity, the total potential ϕ = ϕR + ϕD + ϕI is obtained by
simply summing up the solutions ϕR (2.31) and ϕD (2.32) of the radiation and diffraction
problem, respectively, to the incident wave potential ϕI (2.14). The equation of motion
of the flap can now be solved.

2.3. Flap motion

2.3.1. Hydrodynamic parameters

Consider the law of motion of the flap (2.8). By using the factorizations (2.10) and
(2.11) for θ and Φ respectively, applying the decomposition ϕ = ϕR+ϕD+ϕI , employing
the solutions (2.31) and (2.32) for ϕR and ϕD respectively and expressing Tϵ with (2.9),
(2.8) yields [

−ω2(I + µ+ µpto) + C + Cpto − iω(ν + νpto)
]
Θ = F. (2.33)

In the latter expression Θ is the unknown complex amplitude of rotation of the flap,
while

µ =
πw

4
Re

{
+∞∑
n=0

α0nfn

}
(2.34)

is the added torque due to inertia and

ν =
ωπw

4
Im

{
+∞∑
n=0

α0nfn

}
(2.35)

is the radiation damping, both depending on the solutions α0n to the linear system (B 23)
for the radiation problem. Finally

F = −πw

4
iωA0β00f0 (2.36)

is the complex excitation torque, corresponding to the action on the plate as if it was
held fixed in incoming waves.

2.3.2. Extracted power and capture factor

Expression (2.33) formally describes a simple harmonic oscillator in the frequency
domain; hence the average extracted power from the OWSC over a period T = 2π/ω is

P =
1

T

∫ T

0

(νpto θ,t) θ,t dt =
1

2

ω2νpto |F |2

[C + Cpto − (I + µ+ µpto)ω2]
2
+ (ν + νpto)

2
ω2

, (2.37)
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where again θ = Re
{
Θe−iωt

}
and Θ is the solution of (2.33). Returning to physical

variables via (2.1), the power take-off expressed in Watts (W) is then

P ′ = ρA′2b′3/2g3/2P [W] . (2.38)

The rate of power take-off (2.37) can be maximized according to the optimizing criteria

ω = ω0 =

√
C + Cpto

I + µ+ µpto
, νpto = ν. (2.39a, b)

In the latter, condition (2.39a) corresponds to the tuning between the incident wave
frequency ω and the natural pitching frequency ω0 of the flap, while (2.39b) requires the
equality of the rate of power take-off νpto to the radiation damping ν (2.35). A quick
numerical assessment of the tuning condition (2.39a) for a typical OWSC configuration
(see §3.1) reveals that the natural pitching period T ′

0 = 2π/ω0

√
b′/g ≃ 20 s is larger

than the ordinary wave periods on site, about 5 − 15 s (Henry 2008). Hence the tuning
condition (2.39a) is not achieved in normal operating circumstances. Away from body
resonance, the extracted power (2.37) can still be optimized by adjusting the damping
rate νpto such as ∂P/∂νpto = 0, which yields

νpto = νopt =

√
[C + Cpto − (I + µ+ µpto)ω2]

2

ω2
+ ν2 (2.40)

as the optimum damping rate (see Falnes 2002). Then the optimum power Popt is obtained
by substituting νpto = νopt in (2.37). Now, the rate of extracted power and the optimum
power are functions of the wave climate, so that the amount of energy extracted from a
given floating body strongly depends on the sea state. Therefore both the rate of power
take-off and the optimum power are not reliable indicators of the efficiency of the system
(Cruz 2008). A more rational efficiency assessment is done by considering the capture
factor, defined as the ratio between the optimum power extracted per unit flap width
and the power of the incident wave field per unit crest length, i.e.

CF =
P ′
opt

1
2ρgC

′
gA

′ 2
0 w′ , (2.41)

where A′
0 = A0A

′ and

C ′
g =

ω′

2k′

(
1 +

2k′h′

sinh 2k′h′

)
[m/s] (2.42)

are respectively the amplitude and the group velocity of the incident waves in physical
variables. In the following, all the parameters describing the performance of the OWSC
will be assessed in physical variables.

In the next sections, the analytical theory will be validated against numerical and
experimental models. Discussion will follow on the physical behaviour of the system and
further analysis will investigate the dependence of the system on its main parameters,
such as the frequency of the incident waves and the width of the flap. Resonance will be
shown to occur at special frequencies, namely the cut-off frequencies of sloshing waves
in open channels. The response curves of the system dynamic characteristics show that
the OWSC performance is largest under resonance conditions.
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Figure 2. Behaviour of (a) added inertia torque and (b) excitation torque with wave period in
physical variables. The solid line refers to the analytical values of §2.3.1, while the markers refer
to the numerical solution of van’t Hoff (2009) for various thicknesses of the flap.

3. Discussion

3.1. Numerical and experimental comparison

In order to validate the theory, comparison is made with the numerical results of van’t
Hoff (2009). In the analytical model, the width of the flap is w′ = 18m, while the width
of the channel is b′ = 91.6m, giving a blockage ratio w = w′/b′ ≃ 0.2. The depth of the
channel is h′ = 10.9m and the distance between the bottom and the hinge is c′ = 1.5m.
The amplitude of the incident wave is A′

0 = 0.3m, which gives ϵ = A′
0/b

′ ≃ 0.003 ≪ 1.
This justifies the assumption of linear theory for this case. The numerical data have been
obtained with the software package WAMIT (WAMIT Inc. 2008) for the linear analysis
of the interaction of surface waves with offshore structures. The geometry of the flap
used in the numerical simulations is that of an 18m wide rectangular box standing on a
triangular prism pointing downwards (see van’t Hoff 2009, for specifications). The flap in
turn is hinged on a 1.5m high rectangular platform lying on the bottom of a 10.9m deep
ocean. In the numerical calculations of van’t Hoff (2009) the device is placed in open
water, so that the model does not simulate the effect of the lateral walls. Figures 2(a)
and 2(b), respectively, show the values of the added inertia torque µ′ = ρb′5µ and the
absolute value of the excitation torque |F ′| = ρgA′b′3|F | in physical variables versus the
wave period T ′, for both the analytical and the numerical model. While in the analytical
model the flap has zero thickness, in the numerical model the simulations have been
carried on with different non-zero values of the total thickness 2a′ (see again figure 2a,b).
The agreement between both models is satisfactory. However for the added inertia torque
µ′ (figure 2a), the analytical values are slightly larger than the numerical ones. This is
likely due to the differences in the shape of the flap, a perfect rectangular box in the
analytical model and a rectangular box sitting on a triangular base in the numerical
model. Also, note that the analytical values are larger than the numerical ones next to
the peaks of either the added inertia torque (T ′ ≃ 9.6 s in figure 2a) and the excitation
torque (T ′ ≃ 5.7 s in figure 2b). This is a consequence of the bounding effect of the
lateral walls, absent in the numerical model of van’t Hoff (2009), that will be discussed
in depth in §3.2. Finally, the numerical results in figure 2(a,b) clearly show that the
hydrodynamic coefficients do not vary noticeably while varying the flap thickness. The
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Figure 3. Behaviour of the excitation torque with the period of the incident waves in physical
variables. The squares refer to the experimental results of Henry (2008) for the 20th scale model of
the OysterTM WEC, while the solid line refers to the equivalent analytical model as developed in
section §2. Discrepancy between data at T ′ ≃ 10 s can be explained by the end-to-end resonance
of long-crested waves in the wave tank.

initial assumption of neglecting the thickness of the flap to calculate the hydrodynamic
actions, namely the thin-plate approximation, is then validated. The theoretical results
of §2 are further validated by comparison with the data of Henry (2008). These have been
obtained during an experimental campaign at Queen’s University Belfast on a 20th scale
model of the OysterTM wave energy converter developed by Aquamarine Power Ltd † (see
Folley et al. 2007; Whittaker et al. 2007; Henry et al. 2010) having similar dimensions
to those already specified for the theoretical models. In figure 3 the behaviour of the
excitation torque |F ′| with the incident wave period T ′ is reported for both the equivalent
analytical box-shaped flap and the experimental model of the OysterTM WEC. Very good
agreement is found between the two sets of data: the theoretical model described in §2
is also capable to simulate the behaviour of a real - and more complex - OWSC.

3.2. Resonance

After having shown a good agreement between the analytical and the numerical/exper-
imental data, we shall investigate in more depth the 3D dynamics of the flap in the
channel and the influence of the channel lateral walls in enhancing the efficiency of the
converter. First, let us consider the diffraction problem and analyse the modifications
induced by the 3D wave field in the 3D channel model of §2 with respect to a simplified
reference model, in which b′ = w′, i.e. the flap spans the entire width of the channel. Here
the behaviour of the fluid is clearly two dimensional, so that this layout will be referred
to as the 2D channel. As already demonstrated in the literature (Linton & McIver 2001;
Falnes 2002), the excitation torque acting on the flap in the 2D channel is, in physical
variables,

F ′
2d = 2ρgA′

0w
′
[
h′ − c′

k′
tanh k′h′ +

cosh k′c′ − cosh k′h′

k′2 cosh k′h′

]
[Nm] . (3.1)

† www.aquamarinepower.com
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Figure 4. Behaviour of the excitation torque with the period of the incident waves in physical
variables. The solid line refers to the 3D value F ′, calculated for the geometry of §3.1 . The
dashed line refers to the 2D value F ′

2d (3.1) for the simplified 2D channel, where b′ = w′ = 18m.
The dash-dotted line represents the 2D long-wave limit (3.2). Note that the 3D torque has a
maximum at T ′ = 5.7 s and spikes at T ′ = 4.5 s and T ′ = 9.6 s.

In figure 4 the excitation torque is plotted against the wave period T ′ in physical variables,
for either the 3D-channel model of §2 and the 2D-channel reference model. While the
2D excitation torque regularly increases with the period up to the asymptotic long-wave
value

F̄ ′
2d = lim

k→0
F ′
2d = ρgw′A′

0(h
′ − c′)2 [Nm] ≃ 4.7 · 106 Nm, (3.2)

the 3D torque |F ′| reaches its maximum value max {|F ′|} ≃ 4.75·106 Nm at a finite period
T ′ = 5.7 s. Then it decreases while moving towards longer periods, with a secondary spike
at T ′ = 9.6 s. Hence an immediately noticeable effect of the 3D dynamics is the lowering
of the peak period to finite values. Though the two curves of figure 4 have a very different
aspect, they show the interesting property that max

{
|F |′

}
/max {F ′

2d} = O(1) (see again
figure 4). Hence to further study the 3D effects on the system, it is convenient to consider
the non-dimensional ratio

f =
|F ′|
F̄ ′
2d

(3.3)

between the excitation torque in the 3D channel and the maximum excitation torque
in the 2D channel. In figure 5(a) f is plotted versus the non-dimensional wavelength
λ = λ′/b′ of the incident wave, for the same geometry as above. The graph of figure 5(a)
exhibits the typical spiky behaviour already noticed by Achenbach & Li (1986) when
studying the reflection coefficients for normal incidence of sound waves on an array of
screens. Similar spikes have also been found by Eatock Taylor & Hung (1985), Yeung &
Sphaier (1989), Linton & Evans (1992) and Chen (1994) in the analysis of the hydrody-
namic coefficients of bodies of various shapes in a channel. Note that in figure 5(a) the
spikes, either in the form of local maxima or changes in slope, occur at special values of
λ, i.e. λ = 1, 1/2, 1/3, . . . The latter correspond to the well-known values of the cut-off
wavelengths of the symmetric sloshing modes in a channel (see for example Shemer et al.
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Figure 5. (a) Non-dimensional excitation torque ratio f (3.3) versus the wavelength of the
incident wave for the geometry of §3.1 . Note the spiky shape of the curves, with spikes occurring
at the resonant frequencies λ1 = 1, λ2 = 0.5 and λ3 = 0.333 . . . marked by vertical dash-dotted
lines. (b) Group velocity ratio cgm (3.5) versus wavelength for the first three sloshing modes. Note
that the group velocity of each sloshing mode decays as soon as the relevant cut-off wavelength
λm (3.4) is approached.

1987; Mei et al. 2005)

λm =
λ′
m

b′
=

1

m
, m = 1, 2, . . . (3.4)

The sloshing modes are transverse standing waves whose crests are parallel to the axis
of the channel, oscillating back and forth between the two bounding lateral walls. The
physical behaviour of the sloshing waves is strongly dependent on the width of the channel
and on the wavelength of the incident wave. As shown by Mei et al. (2005), if λ′/b′ =
λ < λm, then the m-th sloshing component propagates along the channel, carrying the
associated wave energy towards infinity. On the other hand, if λ > λm, the amplitude
of the m-th sloshing mode decays exponentially while moving along the channel. In
our case, this means that the energy associated to these modes is trapped near the
OWSC and available for extraction. A further insight on this fundamental influence of
the sloshing modes can be achieved by considering the ratio between the m-th sloshing
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mode group velocity C ′
gm = C ′

g

√
1− (mλ)2 (see Mei et al. 2005) and the group velocity

of the incoming waves C ′
g (2.42), i.e.

cgm = C ′
gm/C ′

g =
√

1− (mλ)2. (3.5)

Recall that the group velocity is the speed of energy transport. As soon as λ → λm = 1/m,
cgm → 0 and the energy of the m-th sloshing mode is no longer propagating along the
channel: the sloshing mode is trapped near the flap. Figure 5(b) shows the behaviour of
the group velocity ratio cgm (3.5) for the first three sloshing modes versus the wavelength
of the incident wave. Let us first consider the group velocity ratio for the mode m = 3
(dotted line). When λ → λ3 = 1/3, the group velocity ratio cg3 quickly decays to zero,
so that the third sloshing mode is now trapped near the flap. The trapping of the energy
associated to this mode determines a sudden increase of the excitation torque acting
on the flap, which results in f having a spike at λ = 1/3, as shown in figure 5(a). By
further increasing λ, the group velocity ratio of the second sloshing mode quickly decays
too, being cg2 = 0 for λ = λ2 = 1/2 (dashed line of figure 5b). Due to the trapping
of the second sloshing mode, the excitation torque acting on the flap further increases,
leading to the peak of f occurring exactly at the cut-off frequency of the second sloshing
mode, λ = λ2 (see figure 5a). Additionally increasing λ makes the incoming waves so
long that they pass through the flap almost as a uniform swelling. As a consequence, the
net pressure acting on the flap diminishes, leading to a decrease of the excitation torque
F which also reflects on f (see again figure 5a). Nevertheless, as soon as λ → λ1 = 1,
cg1 → 0 (see the solid line in figure 5b) and the first sloshing mode is also trapped near
the flap. This results in f having a ultimate spike at λ = 1, as shown in figure 5(a).
The physical picture is now clear. The incoming plane waves, initially 2D, impact the
flap in the middle of the channel. Differently from the 2D channel, in which the incident
waves are totally reflected back to the source, in the 3D channel the waves are also
transmitted beyond the flap, due to the lateral gaps between the body and the channel
walls. Diffraction at the edges of the flap modifies the behaviour of the wave field and
dominates the shape of the hydrodynamic coefficient curves, making them different from
the 2D scenario (see figure 4). As a consequence of this enriched dynamics, transverse
sloshing modes, a feature of the channel, are ultimately excited. Hence the initial 2D
motion shatters into a series of symmetric 3D sloshing waves, resonating each at its own
cut-off frequency. When a sloshing mode resonates, the relevant energy is trapped near
the flap, resulting in an increase of the excitation torque. Similar conclusions can be
drawn also for the radiation problem, where the waves are generated by the pitching
motion of the plate. Figure 6(a, b) shows the plots of the added inertia torque µ (2.34)
and the radiation damping ν (2.35) versus the wavelength of the generated waves in
non-dimensional variables. Note that spikes occur here at the same resonant wavelengths
as those of f (3.3) for the scattering problem (see again figure 5). This correspondence
is due to the relationship between the radiation and scattering problems

F = − iπw

8
A0

√
k (2kh+ sinh 2kh)

1/2

cosh kh
α00

shown in Appendix C, for which the excitation torque acting on the fixed flap in incoming
waves is associated to the radiation potential of the pitching motion of the body. We now
investigate the OWSC performance.

3.3. Wave power extraction

After having analysed the radiation and scattering problems separately, we now turn to
study the performance of the OWSC in terms of wave power extraction. First, let us
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Figure 6. Behaviour of (a) added inertia torque and (b) radiation damping with the wave-
length of the generated waves in non-dimensional variables for the geometry of §3.1. Vertical
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Figure 7. Behaviour of (a) amplitude of rotation and (b) capture factor with the period of
the incident wave in physical variables for the geometry of §3.1. In panel (b) the horizontal
dash-dotted line indicates the average capture factor.

consider the flap pitching amplitude Θ, solution of (2.33). For easiness of representation,
but without loss of generality, in expression (2.33) we take the generator inertial and
linear terms µpto = Cpto = 0 and make use of the optimizing criterion (2.40) for the
rate of power take-off, such that νpto = νopt. Finally, we use the values of the moment of
inertia I and buoyancy factor C for a typical configuration of the OysterTM wave power
device (private communication with Aquamarine Power Ltd). In figure 7(a) the absolute
value of the flap pitching amplitude is plotted versus the period of the incident wave in
physical variables. Note that the amplitude of oscillation of the flap increases smoothly
while moving to longer waves, not showing the characteristic spiky behaviour of the
hydrodynamic coefficients. Since Θ is related to the displacement in the x direction via
the pitching movement of the flap, it seems unaffected by the sloshing modes resonating
in the orthogonal y direction. Let us now consider the capture factor CF , defined by
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(2.41) as a measure of the OWSC efficiency in catching the energy available in incident
waves. In figure 7(b) the capture factor is plotted against the incident wave period.
Comparison between figures 4 and 7(b) reveals that both the excitation torque and the
capture factor have a peak at T ′ = 5.7 s, which corresponds to the resonant period of the
second sloshing mode. Hence the capture factor is dominated by the excitation torque,
which is the power generating action. Overall, figure 7(b) reveals that the average capture
factor of the 3D-channel model is larger than the maximum theoretical value CF = 1

2 of
the 2D-channel model (see for example Mei et al. 2005). This shows again that the 3D
dynamics described in §3.2 altogether increases the efficiency of the device with respect
to the 2D layout. Finally, the maximum capture factor at resonance is maxCF ≃ 0.80,
indicating that the interference between the transverse sloshing modes occurring in the 3D
channel can further enhance the OWSC performance. Resonance of the sloshing modes is
therefore beneficial for wave energy extraction. Despite the fact that the dynamics of the
OWSC in the channel is affected by the bounding effect of the lateral walls, the general
behaviour of the device in the open ocean can also be inferred. There the dominant
physical mechanism is still the transmission of the incident waves beyond the flap, but
no sloshing modes are present. Hence the OWSC is expected to perform in the open
ocean similarly as it does in the 3D channel, exception made for the narrow bandwidths
close to the resonant frequencies of the sloshing modes. However, to simulate properly the
behaviour of a single device in the open ocean a different mathematical model is needed,
in which the waves are allowed to propagate in all directions. In summary, care should
be taken when using experimental results obtained in wave tank testing as a benchmark
for predicting real on-site behaviour. In the following we shall investigate the influence
of the system main parameter, namely the width ratio w = w′/b′, on the performance of
the OWSC.

3.4. Parametric analysis and further research directions

The response of the capture factor CF (2.41) to variations of the flap width is shown in
figure 8. Here the plots of CF against the wave period T ′ are shown for different widths
of the OWSC, i.e. w′ = 6m (corresponding to w = w′/b′ = 0.07), w′ = 12m (w = 0.13)
and w′ = 18m (w = 0.2), for fixed width of the channel, b′ = 91.6m. Note that for
all widths the capture factor is largest in short periods, thus matching the experimental
observations of Whittaker et al. (2007). Indeed at larger periods (not shown here), tuning
of the incoming wave frequency with the natural pitching frequency of the flaps (2.39a)
can occur, thus yielding additional peaks in the capture factor curves. Unfortunately,
this event is unlikely to occur in normal operating conditions of the device (Henry et al.
2010) and won’t be investigated here. Further examination of figure 8 also reveals that
the wider the flap the larger the capture factor, for a given width of the channel. This
fundamental result, already noticed experimentally by Henry (2008) and Henry et al.
(2010), reveals a selective behaviour of the sloshing modes with respect to the width of
the flap, for which the most powerful resonance occurs with the largest flaps. Now, to
what extent can we increase the flap width to exploit this mechanism, in a channel of
fixed width? Of course, growth in the structural loads on the device is a heavy limit on the
enlargement of the flap (Henry 2008). Hence we consider the alternative way of decreasing
the width of the channel, while holding w′ fixed. By decreasing b′ so that w = w′/b′ → 1,
the width of the channel becomes comparable to the width of the flap. Hence the 3D
effects become less noticeable, the geometry approaching that of a 2D device. Figure
9 shows a preliminary analysis of the torque F ′ with the incident wave period T ′ for
w = 0.99. Here 3D effects are largely inhibited by the body, so that the device shows
a “quasi-2D” behaviour (Yeung & Sphaier 1989). As a consequence, when w = O(1)
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Figure 9. Behaviour of the excitation torque with the wave period in physical variables. The
solid line shows the results for the 3D model with b′ = 18m and w′ = 17.8m, i.e. w = 0.99. The
dashed line shows the results for the 2D model (3.1) where b′ = w′ = 18m, i.e. w = 1.

the selective behaviour of the sloshing modes is expected to have a weaker impact on
the performance of the OWSC, whose maximum efficiency will decrease closer to the
theoretical 2D values. This suggests that an optimal layout maximising the resonant
actions on the device must lie in between the two extremes w → 0 (open ocean) and
w → 1 (2D channel). A supplementary investigation of the response of the system to
variations of the channel width is then needed. This analysis is currently ongoing and
will be disclosed in the near future.
Finally, recall that resonance of sloshing modes is a linear mechanism. Nevertheless,

resonant mechanisms can also excite the second-order transverse modes (cross waves, see
Shemer et al. 1987). A preliminary numerical analysis with a weakly nonlinear Boussi-
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nesq model showed nonlinear amplification of the dynamic pressure on the flap to occur
near the cross-wave resonant frequencies (see Schmitt et al. 2012). A nonlinear mathe-
matical model based on the governing equations of Appendix A and on the linear results
obtained here is to be developed to investigate whether the nonlinear interactions can
further increase the performance of the device.

4. Conclusion

A mathematical 3D model of an oscillating wave energy converter (i.e. the OWSC) in
a channel is developed to investigate the influence of the channel sloshing modes on the
performance of the system, in a layout common to many experimental studies (see Folley
et al. 2005; Whittaker et al. 2007; Henry et al. 2010). The linearised theory, based on
the solution of a hypersingular problem in the fluid domain, is satisfactorily validated by
comparison with numerical and experimental models (see respectively van’t Hoff 2009;
Henry 2008). When the flap is set to oscillations by incident waves, the incoming 2D
wave field is modified by the diffraction occurring at the edges of the flap and by the
waves radiating from the device. Then a complex 3D wave field develops in the channel,
increasing the average efficiency of the OWSC with respect to that of a 2D pitching
flap. In addition, this 3D dynamics leads to the excitation of transverse sloshing waves
which resonate each at its own cut-off frequency. Transverse modes trapped near the
flap are responsible for the spiky behaviour of the hydrodynamic characteristics of the
system and further increase the efficiency of the device near resonance. Finally, paramet-
ric analysis reveals a selective behaviour of the sloshing modes, whose resonant capacity
depends on the width of the device. In response to the three issues we anticipated in the
introductory section, we conclude that (i) resonance of the channel sloshing modes is a
linear mechanism and occurs for every width of the flap; (ii) the sloshing modes show a
selective behaviour with respect to the width of the flap, that concurs in increasing the
performance of the device near resonance; (iii) care should be taken when employing the
results obtained in an experimental wave tank to predict the behaviour of the device in
the open ocean, especially near resonant frequencies.

This work was funded by Science Foundation Ireland (SFI) under the research project
“High-end computational modelling for wave energy systems”. Numerical simulations
of van’t Hoff (2009) and experimental data provided by Henry (2008) in agreement
with Aquamarine Power Ltd have been very useful for the validation of the model.
Fruitful discussions with Prof. P. Sammarco, Dr K. Doherty and Dr S. Bourdier are
kindly acknowledged. The Authors wish to thank the wave research group at Queen’s
University Belfast for having let them partake in the June 2011 experimental campaign.

Appendix A. Nonlinear governing equations

Consider the geometry of figure 1 representing the OWSC in the channel as described
in §2. During the motion, the position of each side of the converter (made up by the
bottom foundation and the flap) is at x′ = X ′±, where

X ′±(z′, t′) =

{
±a′, −h′ < z′ < −h′ + c′

− (z′ + h′ − c′) tan θ′ ± a′/ cos θ′, −h′ + c′ < z′ < Z ′± . (A 1)

In the latter, the + (−) superscript denotes the right (left) side of the OWSC and Z ′+

(Z ′−) is the free-surface elevation along the wetted line of the flap on the right (left)
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lateral surface (see figure 1a). Clearly, in (A 1) the upper equivalence holds for all points
on the fixed bottom foundation, while the lower one is valid on the lateral surfaces of
the moving flap. As in many gravity-wave problems (see for example Mei et al. 2005) the
fluid is deemed to be inviscid and incompressible and the flow irrotational. Hence there
exists a potential Φ′(x′, y′, z′, t′) for the velocity field v′ = ∇′Φ′ such that

∇′2Φ′ = 0, (x′, y′, z′) ∈ Ω′, (A 2)

where Ω′ is the fluid domain. To set up a boundary-value problem governing the behaviour
of the fluid in Ω′, the Laplace equation (A 2) must be supplied with appropriate boundary
conditions. On the free-surface, the kinematic-dynamic boundary condition reads

Φ′
,t′t′ + gΦ′

,z′ + |∇′Φ′|2,t′ + 1
2∇′Φ′ ·∇′ |∇′Φ′|2 = 0, z′ = ζ ′, (A 3)

where g is the acceleration due to gravity. In (A 3) the free-surface elevation ζ ′ is obtained
via the Bernoulli equation

−p′

ρ
= gz′ +Φ′

,t′ +
1
2 |∇′Φ′|2 , (A 4)

where ρ is the water density and p′(x′, y′, z′, t′) the fluid pressure. By evaluating (A 4)
at z′ = ζ ′ and considering only the excess pressure over the atmospheric value, the
free-surface elevation is

ζ ′ = −1

g
Φ′

,t′ −
1

2g
|∇′Φ′|2 , z′ = ζ ′. (A 5)

Boundary conditions must also be applied at the solid frontiers delimiting the domain.
We require absence of normal flux through the channel walls

Φ′
,y′ = 0, y′ = ±b′/2, (A 6)

through the moving sides of the OWSC parallel to the x′-axis

Φ′
,y = 0, X ′−(z′, t′) < x′ < X ′+(z′, t′), y′ = ±w′/2, (A 7)

and through the impermeable bottom of the channel

Φ′
,z′ = 0, z′ = −h′. (A 8)

Finally, a kinematic boundary condition allowing only tangential motion along the lateral
surfaces of the OWSC x′ = X ′± is to be applied. Following the reasoning of Sammarco
(1996) for the mobile gates of the Venice storm barriers, we require d/dt′ [x′ −X ′±] =
[x−X ′±],t′ +∇′Φ′ ·∇′[x′ −X ′±] = 0, which yields

Φ′
,x′ =

{
θ′,t′

cos2 θ′
[− (z′ + h′ − c′)± a′ sin θ′]− Φ′

,z′ tan θ′
}

×H(z′ + h′ − c′), x′ = X ′±, −w′

2
< y′ <

w′

2
, (A 9)

where (A 1) has been employed. In (A 9) usage of the Heaviside step function H assures
absence of flux through the bottom foundation.
The equation of motion of the flap

I ′ θ′,t′t′ = T ′
g(t

′) + T ′
p(t

′) + T ′(t′) (A 10)

expresses the dynamic equilibrium of torque about the hinge. In (A 10) I ′ is the second
moment of inertia of the flap, assumed to be given, while T ′

g and T ′
p are respectively
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the torque due to gravity and to the fluid pressure. Finally T ′ is the torque exerted on
the flap by the generator, which in general is partly inertial, partly elastic and partly
damping (see Mei et al. 2005). Torque is positive when it makes the flap rotate counter-
clockwise, according to the convention adopted for θ′ (see figure 1a). Since the fluid
is considered inviscid and the hinge frictionless, there is no torque induced by viscous
tangential stresses. The torque due to gravity is

T ′
g(t

′) = S′g sin θ′(t′), (A 11)

where S′ = M ′d′ is the first moment of inertia of the plate. In the latter expression M ′ is
the mass of the flap and d′ is the distance between the centre of mass and the hinge (see
Mei et al. 1994; Sammarco 1996). BothM ′ and d′ are assumed to be given. The net torque
T ′
p exerted by the fluid pressure p′ on the flap is obtained by integrating the product

between the unit pressure force p′dy′dz′/ cos θ′ and the arm (z′+h′−c′∓a′ sin θ′)/ cos θ′

respectively on the right and left surfaces of the flap:

T ′
p =

∫ Z′+

−h′+c′

∫ w′/2

−w′/2

p′
(
X ′+, y′, z′, t′

) z′ + h′ − c′ − a′ sin θ′

cos2 θ′
dy′dz′

−
∫ Z′−

−h′+c′

∫ w′/2

−w′/2

p′
(
X ′−, y′, z′, t′

) z′ + h′ − c′ + a′ sin θ′

cos2 θ′
dy′dz′. (A 12)

Summarizing, the complete set of nonlinear differential equations governing the coupled
motion of the water and the flap includes: the Laplace equation (A 2), the kinematic-
dynamic boundary condition (A 3) at the free surface (A 5), the no-flux conditions re-
spectively on the channel walls (A 6), on the sides of the OWSC parallel to x′ (A 7) and
on the bottom of the channel (A 8), the kinematic condition on the lateral surfaces of
the OWSC (A9) and finally the equation of motion of the flap (A 10).

Appendix B. Solution of the plane radiation and scattering problems

Solution to the plane radiation and scattering problems of §2.2 is sought here with an
integral-equation technique based on an appropriate decomposition of the channel Green
function.

B.1. The channel Green function

Define the Green function Gn(x, y; ξ, η) singular at (ξ,±η) ∈ Σ as the outgoing solution
of the Helmholtz equation(

∇2 + κ2
n

)
Gn = 0, (x, y) ∈ Σ \ (ξ,±η), (B 1)

where Σ is the 2D fluid domain of figure 1(b), with boundary conditions

Gn,y = 0, y = ±1/2, (B 2)

Gn ≃ 1

2π
ln ρ±, ρ± → 0, (B 3)

where ρ± =
√

(x− ξ)2 + (y ∓ η)2 and κn are the eigenvalues (2.23) of the dispersion
relationship (2.24), n = 0, 1, 2, . . . The solution of the boundary-value problem (B 1)–
(B 3) is given in its classical form by Linton (1998). Here we shall use the decomposition

Gn(x, y; ξ, η) = − i

4

[
G(0)

n (x, y; ξ, η) +G(1)
n (x, y; ξ, η)

]
, (B 4)
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where

G(0)
n (x, y; ξ, η) = H

(1)
0

(
κn

√
(x− ξ)2 + (y − η)2

)
+H

(1)
0

(
κn

√
(x− ξ)2 + (y + η)2

)
(B 5)

and

G(1)
n (x, y; ξ, η) =

+∞∑
m=−∞
m ̸=0

[
H

(1)
0

(
κn

√
(x− ξ)2 + (y − η −m)2

)

+H
(1)
0

(
κn

√
(x− ξ)2 + (y + η −m)2

)]
(B 6)

with H
(1)
n the Hankel function of first kind and order n ∈ N. Expressions (B 4)–(B 6)

represent a sum of sources equally spaced along the y-axis, due to the mirroring effect of

the side walls (as anticipated in §2.1). Note thatG(0)
n (B 5) is singular at (x, y) = (ξ,±η) ∈

Σ, while G
(1)
n (B 6) has no poles in Σ. The simple Green function decomposition (B 4) into

a singular part and a converging series will enable us to find appealing fast-convergent
semi-analytical solutions to the radiation and diffraction problems.

B.2. Solution

Consider the plane potentials φ
(R,D)
n solving the system (2.25)–(2.27), outgoing at large

|x|. Application of the Green theorem (see for example Mei 1997) to φ
(R,D)
n and Gn in

the domain Σ yields after some algebra

φ(R,D)
n (x, y) = − i

8

∫ w/2

−w/2

∆φ(R,D)
n

[
G

(0)
n,ξ +G

(1)
n,ξ

]
ξ=0

dη, (B 7)

where

∆φ(R,D)
n = ∆φ(R,D)

n (η) = φ(R,D)
n (−0, η)− φ(R,D)

n (+0, η) (B 8)

denotes the jumps in radiation and diffraction potentials from the left to the right side of
the flap in the x direction, still unknown. In (B 7) the subscript ξ = 0 indicates the point
at which the term in brackets is to be calculated. Application of the boundary conditions
(2.27) on the wet contour of the plate to (B 7) gives

− i

8

∂

∂x

∫ w/2

−w/2

{
∆φR

n

∆φD
n

}[
G

(0)
n,ξ +G

(1)
n,ξ

]
ξ=0

dη

∣∣∣∣∣
x=±0

=

{
V fn

A0 dn

}
, −w/2 < y < w/2,

(B 9)

which are integro-differential equations for ∆φ
(R,D)
n . The structure of (B 9) would sug-

gest to bring the outer derivative under the integral sign. However, due to the singular

behaviour of G
(0)
n (B 5), this would lead to a divergent integrand near the poles η = ±y.

Nevertheless, Martin & Rizzo (1989) demonstrated that in integro-differential equations
like (B 9) the inversion between the outer derivative and the integral is possible provided
the latter is interpreted as a Hadamard finite-part integral

∫
× (Linton & McIver 2001).
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By virtue of Martin & Rizzo (1989)’s theorem, (B 9) can be rewritten as

∫ w/2

−w/2

×

{
∆φR

n

∆φD
n

} ∂ G
(0)
n,ξ

∣∣∣
ξ=0

∂x

∣∣∣∣∣∣∣
x=0

dη +

∫ w/2

−w/2

{
∆φR

n

∆φD
n

} ∂ G
(1)
n,ξ

∣∣∣
ξ=0

∂x

∣∣∣∣∣∣∣
x=0

dη = 8i

{
V fn

A0 dn

}
. (B 10)

The latter are hypersingular integral equations for the jumps in potential ∆φ
(R,D)
n across

the flap. The singularity lies in the first term of the left-hand side and is due indeed to

the divergent component G
(0)
n of the Green function Gn (B 4). To reveal the nature of

the singularity, substitute the series (B 5) and (B 6) respectively for G
(0)
n and G

(1)
n into

(B 10). Then perform the double differentiation with respect to ξ and x and use the
property

∫ α

−α
f(x) dx =

∫ α

−α
f(−x) dx (see Gradshteyn & Ryzhik 2007, §3.022) to get∫ 1

−1

×
{

Pn(u)
Qn(u)

}
H

(1)
1 ( 1

2κnw|v0 − u|)
|v0 − u|

du

+
+∞∑

m=−∞
m̸=0

∫ 1

−1

{
Pn(u)
Qn(u)

}
H

(1)
1 ( 1

2κnw|vm − u|)
|vm − u|

du =
4i

κn

{
V fn
A0 dn

}
, (B 11)

for the boundary condition on the wet contour of the flap. In the latter,

u = 2η/w, vm = 2(y −m)/w, η, y ∈ (−w/2, w/2), (B 12)

while {
Pn(u)

Qn(u)

}
=

{
∆φR

n (
1
2wu)

∆φD
n ( 1

2wu)

}
=

{
∆φR

n (η)

∆φD
n (η)

}
(B 13)

denote the jumps in potential in the new variables. Note that Pn(u) = Pn(−u) and
Qn(u) = Qn(−u) because of symmetry. Again, as a result of the decomposition (B 4),
the singular behaviour of (B 11) is restricted to the finite-part integral of the left-hand
side. We must focus on this term to circumvent the singularity. First, expand the Hankel

function H
(1)
1 according to the series representation (see Gradshteyn & Ryzhik 2007,

§8.444)

H
(1)
1 ( 1

2κnw|v0 − u|) = 4

iπ

1

κnw|v0 − u|
+Rn ( 1

2κnw|v0 − u|) , (B 14)

where

Rn(α) = J1(α)

[
1 +

2i

π

(
ln

α

2
+ γ
)]

− i

π

α
2
+

+∞∑
j=2

(−1)j+1(α/2)2j−1

j!(j − 1)!

(
1

j
+

j−1∑
q=1

2

q

)
(B 15)

is the remainder, J1(x) is the Bessel function of first kind and first order and γ =
0.577215 . . . the Euler constant. Then, by making use of (B 14), rewrite the hypersingular
integral equations (B 11) as∫ 1

−1

×
{

Pn(u)
Qn(u)

}
(v0 − u)−2 du+

{
Kn [Pn(u)]
Kn [Qn(u)]

}
= −πw

{
V fn
A0 dn

}
. (B 16)
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In the latter expression

Kn[f(u)] =
iπκnw

4

∫ 1

−1

f(u)

[
Rn( 1

2knw|v0 − u|)
|v0 − u|

+
+∞∑

m=−∞
m ̸=0

H
(1)
1 ( 1

2κnw|vm − u|
|vm − u|

]
du

(B 17)
is an integral function. Note that as u → v0 ∈ (−1, 1), Rn( 1

2κnw|v0 − u|) ≃ |v0 −
u| ln |v0 − u| from (B15), hence Kn has a convergent kernel. The singularity in (B 16) is
finally isolated in the Hadamard integral, whose kernel has a 2nd-order pole at v0. This
fundamental result now allows us to solve the hypersingular integral equation (B 16)
in terms of the jumps in radiation and diffraction potentials, Pn and Qn respectively.
Indeed the Hadamard integral in (B 16) admits eigenfunctions that are proportional to
the second-kind Chebyshev polynomials Up, p ∈ N (Linton & McIver 2001). The latter
constitute a complete set of eigenfunctions in the domain u ∈ [−1, 1]. Then the analytical
form of (B 16) itself suggests to seek for solutions of the type{

Pn(u)
Qn(u)

}
=

{
V
A0

}(
1− u2

)1/2 +∞∑
p=0

{
αpn

βpn

}
Up(u), (B 18)

where the αpn and βpn are unknown complex constants. Note that the position (B 18)
also reflects the asymptotic behaviour of the jump in potential near the tips of the flap
u = ±1, where Pn, Qn ≃

√
(1− u2) → 0 and the velocity has a square-root singularity

(see Newmann 1971; Linton & McIver 2001). Now the Chebyshev polynomials Up satisfy
the integral relationship (see Parsons & Martin 1992)∫ 1

−1

×
(
1− u2

)1/2
Up(u)

(v0 − u)
2 du = −π(p+ 1)Up(v0), v0 ∈ (−1, 1), (B 19)

where v0 = 2y/w according to (B 12) and y ∈ (−w/2, w/2). Substitution of the series
expansions (B 18) in the relevant hypersingular integral equations (B 16) and application
of the property (B 19) yield finally

∞∑
p=0

{
αpn

βpn

}
Cpn(v0) = −πw

{
fn
dn

}
, v0 ∈ (−1, 1), (B 20)

with

Cpn(v0) = −π (p+ 1)Up(v0) +
iπκnw

4

∫ 1

−1

(
1− u2

)1/2
Up(u)

×
[
Rn( 1

2κnw|v0 − u|)
|v0 − u|

+
+∞∑

m=−∞
m ̸=0

H
(1)
1 ( 1

2κnw|v0 − 2m/w − u|)
|v0 − 2m/w − u|

]
du. (B 21)

The latter can be evaluated by solving numerically the convergent integral in (B 21).
For given n, expression (B 20) defines two different linear equations, both valid for any
v0 ∈ (−1, 1). The upper equation is for the coefficients αpn = αpn(ω) of the jump in
the plane radiation potential φR

n across the plate, while the lower equation is for the
coefficients βpn = βpn(ω) of the jump in the plane diffraction potential φD

n . Theoretically
there exists an infinity of points v0 ∈ (−1, 1) where (B 20) can be evaluated, thus yielding
a system of an infinite number of equations (one for each v0) for an infinite number of
unknowns. For (B 20) to be solved numerically, the unknowns must be truncated to
a finite integer number P < ∞ and a finite number of evaluation points v0 = v0j ,
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j = 0, 1, . . . , P must be also chosen in the domain (−1, 1). Parsons & Martin (1992)
showed that the fastest numerical convergence for such a system is achieved when the
v0j are the zeros of the Chebyshev polynomial of first kind (see Gradshteyn & Ryzhik
2007), i.e.

v0j = cos
(2j + 1)π

2P + 2
, j = 0, 1, . . . , P. (B 22)

Hence (B 20) reduces to two (P + 1)× (P + 1) truncated algebraic systems

P∑
p=0

{
αpn

βpn

}
Cpn(v0j) = −πw

{
fn
dn

}
, j = 0, 1, . . . , P, (B 23)

for each n = 0, 1, 2, . . . Once (B 23) has been solved in terms of the αpn and βpn for a

given modal order n, the jump in the n-th modal potentials across the plate ∆φ
(R,D)
n (η)

can be determined with (B 18) together with the change of variable dictated by (B 12)

and (B 13). Now substituting ∆φ
(R,D)
n (η) into Green’s theorem (B 7), differentiating the

Green function (B 4) inside the integral and summing up all the eigenmodes yield the
expressions of the plane potentials. The n-th modal plane radiation potential is given by

φR
n (x, y) = − iwV

8
κnx

M∑
p=0

α(2p)n

+∞∑
m=−∞

∫ 1

−1

(
1− u2

)1/2
U2p(u)

×
H

(1)
1

(
κn

√
x2 + (y − 1

2wu−m)2
)

√
x2 + (y − 1

2wu−m)2
du, (B 24)

where M = ⌊P/2⌋. In (B 24) only the even terms survive because the odd terms give
no contribution when integrated and summed up over symmetric domains. Finally, the
plane diffraction potential is given by

φD
0 (x, y) = − iwA0

8
kx

M∑
p=0

β(2p)0

+∞∑
m=−∞

∫ 1

−1

(
1− u2

)1/2
U2p(u)

×
H

(1)
1

(
k
√
x2 + (y − 1

2wu−m)2
)

√
x2 + (y − 1

2wu−m)2
du. (B 25)

Here only the 0-th modal component φD
0 is non-zero; in other words, the diffraction

problem only admits the fundamental mode n = 0. This happens since dn = 0 for n > 0
(see 2.30). Hence the βpn, which are homogeneous solutions of (B 23) for n > 0, must
be zero to ensure uniqueness of the non-homogeneous solutions αpn for n > 0. This is
a solvability condition of the coupled radiation-diffraction problems, which substituted
into (B 18) and then into (B 7) yields ultimately φD

n = 0, n > 0.

Appendix C. Further relations between radiation and scattering

In this section we provide some relations between the radiation and the scattering
problems discussed in §2. First consider the excitation torque F given by (2.36). The
latter depends on β00, solution of the linear system (B 23) for the scattering problem.
Here we show that that F can also be written in terms of the solutions α00 to the linear
system (B 23) for the radiation problem. Consider the two systems of equations (B 23) for
αp0 and βp0 respectively. Since the coefficients Cp0 are the same in either system, then



Resonant behaviour of an OWEC in a channel 25

one must have βp0 = αp0d0/f0 to ensure uniqueness of the solution. Hence substitution
of the latter expression into (2.36) and the use of (2.30) for d0 yield after some algebra

F = − iπw

8
A0

√
k (2kh+ sinh 2kh)

1/2

cosh kh
α00 (C 1)

for the complex excitation torque. In (C 1) α00 is given by the solution of the system (B 23)
for the radiation problem, which then suffices to describe the dynamic actions on the
flap. In addition, a direct relationship between the diffraction torque F and the radiation
damping ν (2.35) can also be found. First, numerical evaluation of the coefficients α0n

reveals that Im {α0n} = 0 for all n > 0. As a consequence, expression (2.35) for the
radiation damping simplifies as

ν =
ωπw

4
f0 Im {α00} . (C 2)

Then by taking the real part of F (C 1) and making use of (C 2) to express Im {α00} in
terms of ν, the sought relationship between the radiation damping and the excitation
torque is found

ν =
1

k Cg

[
h− c+

cosh kc− cosh kh

k sinh kh

]
tanh khRe

{
F

A0

}
, (C 3)

Cg being the non-dimensional group velocity corresponding to (2.42). Expression (C 3) is
the counterpart of the 2D Haskind-Hanaoka relation that associates the excitation torque
acting on the fixed flap in incoming waves with the radiation potential of the pitching
motion of the body (see for example Mei et al. 2005). According to (C 3) a close link
exists between the radiation and the scattering problems, for which they both exhibit the
same resonant behaviour, as pointed out in §3.2. Finally, (C 3) has also been employed
as a benchmark to double-check the solution of the whole system.
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