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We consider the mechanics of coupled underwater-acoustic and surface-gravity waves
generated by surface pressure disturbances in a slightly compressible fluid. We show
that pressure changes on the ocean surface, localised in space and time, can induce
appreciable underwater compression waves which are precursors of the surface gravity
waves. Although the physical properties of acoustic-gravity waves have already been
discussed in the literature, such dynamics was not investigated in previous studies. We
derive new results for the underwater compression wave field and discuss the dynamics
of its generation and propagation. This work could lead to the design of innovative alert
systems for coastal flooding management.

Key words:

1. Introduction

In this paper, we show that the generation of transient surface gravity waves by sudden,
localised surface pressure perturbations is associated with the existence of underwater
acoustic precursors directly coupled with the gravity waves. This result advances previous
incompressible and compressible models of ocean surface waves.
The vast majority of wave theories usually neglect the effect of compressibility on the

generation and propagation of ocean surface waves. This is a safe assumption for many
applications in ocean engineering (Mei et al. 2005). However, a quick analysis with the
linearised theory of compressible water waves shows that propagating acoustic-gravity
modes exist in addition to the surface gravity wave when f > f0 = c/(4h), where f is the
acoustic-gravity wave frequency, c is the speed of sound in water and h the bottom depth
(Stiassnie 2010). Acoustic-gravity waves of frequency f > f0 propagate at a speed of the
order of the speed of sound in water and are much faster than the leading surface gravity
waves (Lighthill 1978; Mei et al. 2005). This appealing feature of acoustic-gravity waves
has only recently been considered in ocean engineering applications, like for example
tsunami early warning (Stiassnie 2010; Sammarco et al. 2013). Indeed, recent analysis of
hydrophone data has shown the occurrence of underwater acoustic noise directly coupled
with violent atmospheric perturbations (Wilson & Makris 2008). This suggests that com-
pressibility needs to be included into the theory of transient wave generation by surface
pressure variations.
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The physical properties of acoustic-gravity waves in compressible water have been al-
ready discussed in the past (Stoneley 1926; Longuet-Higgins 1950; Hasselmann 1963; Guo
1987; Ardhuin & Herbers 2013; Ardhuin et al. 2013). However, except for Hasselmann
(1963)’s statistical approach and Guo (1987)’s deep-water attempt, little attention has
been paid to the hypothesis that underwater compression waves can be generated to-
gether with gravity waves directly by sudden pressure variations and gustiness present
in turbulent air masses during storms or cyclones. Previous Authors considered surface
pressure patterns caused by second-order interaction of gravity waves, neglecting the
first-order effects of compressibility (Ardhuin & Herbers 2013). They showed that near-
surface nonlinear hydrodynamic interactions of gravity waves generate pseudo-Rayleigh
waves travelling at large depths and acoustic-gravity modes propagating closer to the
ocean surface (Ardhuin et al. 2013). The direct transient response of a compressible fluid
to a surface pressure field localised in space and time did not receive much attention,
despite its potential impact in practical applications. Such a dynamics strongly depends
on the previously neglected first-order compressibility and hence is related to a different
phenomenon. We shall refer to the first-order acoustic-gravity modes as “hydro-acoustic”
(HA) waves (Stiassnie 2010; Sammarco et al. 2013) to distinguish them from the second-
order pseudo-Rayleigh (R) and acoustic-gravity (AG) modes (Ardhuin & Herbers 2013;
Ardhuin et al. 2013). On the one hand, R and AG waves are the effect of interacting
surface gravity waves. On the other hand, HA waves are directly interconnected to the
gravity waves as both are induced by the same source, be it a ground motion (as in the
case of tsunamis, see Stiassnie 2010) or a surface pressure variation. In other words, HA
waves are generated together with (and are not a consequence of) surface gravity waves.
We shall show that, due to the peculiar co-generation mechanism and different speeds of
propagation in water, HA waves can be interpreted as the forerunners of surface gravity
waves generated by surface pressure disturbances localised in space and time.

This paper aims: (i) To formalise the problem with a compressible Cauchy-Poisson
system and to show that the latter does admit HA waves (§2); (ii) To derive new formulae
for the HA pressure field (§3); (iii) To show that HA waves can be regarded as the
Sommerfeld precursors (or forerunners) of the gravity surface waves generated by sudden
surface pressure disturbances (§4). The practical aspects of this fact are significant, in
that HA waves could be used for the early detection of rogue waves or surges generated
by atmospheric perturbations approaching coastal areas.

2. Mathematical model

2.1. Governing equations

Consider an ocean of constant depth h which extends infinitely along the horizontal
direction x. Assume that the characteristic extension of the surface pressure disturbance
along the longitudinal axis x is much smaller than that along the transverse direction y,
like e.g. in a trailing squall line of a cyclone. Therefore the problem can be investigated
in the two-dimensional vertical plane (x, z). The z axis rises from the unperturbed water
level z = 0 and is positive upwards, the bottom being at z = −h. Assume that the fluid
is inviscid and weakly compressible and that the water motion is irrotational. The water
density ρ = ρ0 + ρ′ can be regarded as the sum of a constant ambient density ρ0 and a
perturbation ρ′ ≪ ρ0. Assume that the fluid is barotropic, so that the pressure p = p(ρ).
Taylor-expanding the latter expression about the constant density ρ0 yields

p(ρ) = p(ρ0) + c2ρ′ +O(ρ′
2
), (2.1)
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where

dp/dρ = c2 (2.2)

is the square of the (assumed constant) speed of sound in water (Lighthill 1978). In the

following, all physical quantities of order O(ρ′
2
) and higher will be neglected upon the hy-

pothesis of weakly compressible fluid. Irrotationality of the wave field allows the existence
of a velocity potential φ(x, z, t) such that the velocity vector v satisfies v(x, z, t) = ∇φ,
t being time and ∇f(x, z, t) = (fx, fz). Subscripts denote differentiation with respect to
the relevant variable. The equation of mass conservation yields

ρ′t + ρ0∇2φ = 0. (2.3)

In the latter expression, the convective term v · ∇ρ′ and the quantity ρ′∇ · v have
been neglected as higher-order effects of compressibility (Lighthill 1978). The linearised
momentum equation in Bernoulli’s form reads

gz +

∫

dp

ρ
+ φt = C(t), (2.4)

where g is the acceleration due to gravity. C(t) = 0 since no standing waves are expected
to be generated (Ardhuin & Herbers 2013). Combination of (2.4) with (2.1)–(2.3) yields
the well-known wave equation

φtt = c2∇2φ, x ∈ R, z ∈ (−h, 0). (2.5)

On the free surface, the linearised kinematic boundary condition reads

ζt = φz , z = 0, (2.6)

ζ(x, t) being the free-surface elevation. Applying the Bernoulli equation (2.4) on the
linearised free surface yields the dynamic boundary condition

φt + gζ = −Pa(x, t)/ρ0, z = 0, (2.7)

where Pa is the prescribed localised and transient pressure disturbance acting on the free
surface. We require that Pa → 0 as |x| → ∞ and as t → ∞. Physically, Pa offers a simple
representation of the action of convective downdrafts generated by rain-cooled air, fast
sinking inside the squall line. Finally, at the bottom the no-flux condition reads

φz = 0, z = −h. (2.8)

We assume that the external forcing initiates at t = 0 and that the fluid is unperturbed
for all t < 0. Then the following initial conditions apply:

φ(x, z, 0) = 0, z ∈ [−h, 0]; ζ(x, 0) = 0. (2.9a, b)

As a consequence, (2.7) yields

φt(x, 0, 0) = −Pa(x, 0)/ρ0. (2.10)

Unlike for an incompressible fluid, when the fluid is compressible a sudden pressure
change on the free surface is not transmitted instantaneously underneath. Therefore we
need to prescribe the state of all fluid particles in the fluid domain at t = 0. Below the
free surface, the fluid is still at rest at t = 0, so that the pressure there is distributed
hydrostatically, i.e.

φt(x, z, 0) = 0, z ∈ [−h, 0). (2.11)

This condition is peculiar to the compressible problem and does not appear in the in-
compressible case (see e.g. Mei et al. 2005).
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2.2. Solution

The set of equations (2.5)–(2.11) represents a Cauchy-Poisson problem of acoustic-gravity
wave generation by a surface pressure disturbance in a compressible fluid. Let us now
introduce the Laplace transform of the velocity potential

φ̄(x, z; s) =

∫

∞

0

φ(x, z, t) e−st dt ; φ(x, z, t) =
1

2πi

∫

Γ

φ̄(x, z; s) est ds, (2.12)

where Γ is a vertical line lying on the right of the singularities of φ̄(x, z; s) in the complex
s plane (Mei 1997). Note that no Sommerfeld radiation condition can be required on φ,
since the transient nature of the perturbation prevents the system from reaching a steady
sinusoidal state of outgoing radiation at any finite time (Mei et al. 2005). Instead, because
of the spatio-temporal localisation of the phenomenon under analysis, we expect that the
disturbance generated at t = 0 by the pressure acting on the free surface vanishes far from
the source at all times. This in turn yields φ(x, y, t) → 0 as |x| → ∞. As a consequence,
the Fourier transform in the unbounded x domain can be used with no mathematical
ambiguity:

ˆ̄φ(z; k, s) =

∫

∞

−∞

φ̄(x, z; s) e−ikx dx; φ̄(x, z; s) =
1

2π

∫ +∞

−∞

ˆ̄φ(z; k, s) eikxdk. (2.13)

Transforming the system of equations (2.5)–(2.8) with (2.12)–(2.13) and applying the
initial conditions (2.9)–(2.11) yields the following boundary-value problem for the double
Fourier-Laplace transform of the velocity potential:

ˆ̄φzz −
(

k2 +
s2

c2

)

ˆ̄φ = 0 , z ∈ (−h, 0) (2.14)

ˆ̄φz +
s2

g
ˆ̄φ = − s

ρ0g
ˆ̄Pa(k, s) , z = 0 (2.15)

ˆ̄φz = 0 , z = −h, (2.16)

where ˆ̄Pa(k, s) is the double Fourier-Laplace transform of the surface pressure disturbance
Pa(x, t). The incompressible version of the Cauchy-Poisson problem (2.14)–(2.16) has
already been analysed by Mei et al. (2005). Indeed, the effect of water compressibility is
responsible for increased complexity and richer dynamics than in the incompressible case,
as shown in the following. The solution of the boundary-value problem (2.14)–(2.16) is

ˆ̄φ(z; k, s) = −
ˆ̄Pa(k, s)

ρ0

coshβ(z + h)

coshβh

s

s2 + gβ tanhβh
, (2.17)

where

β = β(k, s) =

√

k2 +
s2

c2
, k ∈ R, s ∈ C. (2.18)

The latter expression requires choice of an appropriate Riemann surface to avoid multi-
valuedness, which will be discussed shortly. For now, it suffices to note that (2.17) is even

in β. Then ˆ̄φ is unaffected by changes in the sign of β. The double-inverse transform of
(2.17) according to (2.13) and (2.12) yields the convolution integral

φ(x, z, t) =

∫ t

0

∫

∞

−∞

Pa(ξ, τ)G(x − ξ, z, t− τ) dξ dτ, (2.19)
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where

G(x, z, t) = − 1

4π2i ρ0

∫ +∞

−∞

eikx
∫

Γ

cosh(β(k, s)(z + h))

cosh(β(k, s)h)

× s est

s2 + gβ(k, s) tanh(β(k, s)h)
ds dk (2.20)

is the Green function of the velocity potential, solution of the problem with Pa(x, t) =
δ(x)δ(t−0+). We shall now solve the inner integral of the Green function (2.20) by means
of complex analysis. The poles of the integrand in the complex s plane are the zeroes of

s2 + gβ(k, s) tanh(β(k, s)h), s ∈ C, k ∈ R.

Such equation has imaginary zeroes at s = iω, where ω ∈ R satisfies the acoustic-gravity
dispersion relation

ω2 = gβ(k, iω) tanh(β(k, iω)h), (2.21)

β being given by (2.18). As already discussed by Stoneley (1926) and Longuet-Higgins
(1950), expression (2.21) admits the solutions

β = β0 : ω2
0 = gβ0 tanhβ0h, β0(k) =

√

k2 − ω2
0

c2
, |ω0| < |k|c (2.22)

and

β = ±iβn : ω2
n = −gβn tanβnh, βn(k) =

√

ω2
n

c2
− k2, |ωn| > |k|c, (2.23)

where n = 1, 2, . . . Hence s = ±iω0(k) and s = ±iωn(k) are the poles of the integrand
in (2.20). Note that in the incompressible limit (c → ∞) only (2.22) survives. Therefore
(2.22) relates to the gravity wave, while (2.23) relates to the HA modes arising because
of the compressibility of the fluid. In order to solve (2.22)–(2.23), the anticipated multi-
valuedness of β in (2.18) must now be resolved. The complex function β has two imaginary
branch points at s = ±ikc. To make β single valued, we shall introduce the branch cuts
depicted in figure 1(a) and choose the Riemann sheet for which θ1 ∈ (−3/2π, 1/2π] and
θ2 ∈ [−1/2π, 3/2π). With such choice, it is immediate to verify that β0 in (2.22) and
the βn in (2.23) are positive real functions. Figure 2(a) shows the graphical solution of
(2.22), while figure 2(b) that of (2.23). We are now ready to solve the inner integral of
(2.20) in the complex plane. Note that no branch-cuts are required for this task since the
integrand is single valued. For t < 0, integration along the dashed circuit of figure 1(b),
application of the residue theorem and of the Jordan lemma yields G(x, z, t < 0) = 0,
which satisfies the initial rest requirement. For t > 0, integration along the closed circuit
of figure 1(b) and application of the same fundamental theorems of complex analysis
gives G(x, z, t) = Gg(x, z, t) +Gc(x, z, t), where

Gg = − 1

πρ0

∫ +∞

0

cosh(β0(k)(z + h))

cosh(β0(k)h)

cos kx cos(ω0(k) t)

1 +
ω2

0
(k)

2c2β2

0
(k)

(

1 + 2β0(k) h
sinh(2β0(k) h)

) dk (2.24)

and

Gc = − 1

πρ0

+∞
∑

n=1

∫ +∞

0

cos(βn(k)(z + h))

cos(βn(k)h)

cos kx cos(ωn(k) t)

1− ω2
n
(k)

2c2β2
n
(k)

(

1 + 2βn(k) h
sin(2βn(k) h)

) dk. (2.25)

The wave field is twofold: Gg (2.24) represents a transient propagating gravity wave,
while Gc (2.25) describes the HA component Gc =

∑

∞

n=1 Gcn made up by the HA modes
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Figure 1. Analysis in the complex s plane. (a) Branch points and branch cuts for β(k, s) (2.18).
The Riemann sheet θ1 ∈ (−3/2 π, 1/2 π], θ2 ∈ [−1/2 π, 3/2π) is chosen to avoid multi-valued-
ness. (b) Integration paths to evaluate (2.20). The bold path is for t > 0, the dashed one for t < 0.
Recall that no branch cuts are required in (b) since the integrand of (2.20) is a single-valued
function of s.
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Figure 2. Acoustic-gravity dispersion relation in the complex s plane. Graphic solutions to (a):
expression (2.22); (b): expression (2.23). Parameters are: c = 1500m/s, k = 0.01m−1, h = 150m.

Gcn. Expression (2.25) is in general different from zero and shows that HA modes can be
generated by the application of a surface pressure disturbance. This extends the results
obtained by earlier theories as anticipated in §1. Note that (2.25) is formally similar to
other compressible-flow potentials, like e.g. the potential of the air flow inside a tube,
open at one end and fitted with a movable piston at the other (Stoneley 1926). The
solution φ(x, z, t) for a generic surface pressure distribution Pa(x, t) can now be obtained
by substituting G = Gg +Gc back into the convolution integral (2.19) and solving once
Pa(x, t) is assigned. Moving forward from these foundations, in the next section we shall
show with an example that HA waves can be identified as the “acoustic signature” of
surface gravity waves generated by surface pressure disturbances localised in space and
time.
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3. Discussion

Pressure fluctuations on the ocean surface are notoriously difficult to represent math-
ematically (Guo 1987). Exponential distributions are widely used simplifications which
allow one to obtain the fundamental physical picture of the problem (Guo 1987; Mei et al.
2005). As an example, here we shall consider the acoustic-gravity wave field generated
by a double Gaussian surface pressure distribution in space and time,

Pa(x, t) =
2I0
πǫσ

e−(x/σ)2 e−(t/ǫ)2 , x ∈ R, t > 0, (3.1)

where ǫ and 2σ are, respectively, the characteristic duration and length of the perturba-
tion and I0 =

∫

∞

−∞

∫

∞

0
Pa(x, t) dxdt is the total impulse per unit y width. Substituting

(3.1) and the Green function components (2.24)–(2.25) into the convolution expression
(2.19), after some lengthy algebra we obtain φ = φg + φc, where

φg(x, z, t) = − I0
2πρ0

∫

∞

0

cosh(β0(k)(z + h))

cosh(β0(k)h)

e−(σk/2)2

1 +
ω2

0
(k)

2c2β2

0
(k)

(

1 + 2β0(k) h
sinh(2β0(k) h)

)

× [a0(k, t) cos(ω0(k)t) + b0(k, t) sin(ω0(k) t)] cos kxdk (3.2)

is the gravity wave field and

φc(x, z, t) = − I0
2πρ0

∞
∑

n=1

∫

∞

0

cos(βn(k)(z + h))

cos(βn(k)h)

e−(σk/2)2

1− ω2
n
(k)

2c2β2
n
(k)

(

1 + 2βn(k) h
sin(2βn(k) h)

)

× [an(k, t) cos(ωn(k)t) + bn(k, t) sin(ωn(k) t)] cos kxdk (3.3)

is the HA wave field. The ωn(k), n = 0, 1, . . . are again the solutions of the acoustic-
gravity dispersion relation (2.21). In (3.2) and (3.3)

an(k, t) = e−(ǫωn(k)/2)
2

erf

(

t

ǫ
+

iǫωn(k)

2

)

+ c.c. (3.4)

and

bn(k, t) = e−(ǫωn(k)/2)
2

[

i erf

(

t

ǫ
+

iǫωn(k)

2

)

+ erfi

(

ǫωn(k)

2

)]

+ c.c. (3.5)

are real functions depending on the modal order n = 0, 1, . . . c.c. is the complex conjugate
of the preceding term. Using the expansion formula (8.254) of Gradshteyn & Ryzhik
(2007) for the error functions in (3.4) and (3.5) reveals that both an and bn decay as
O(1/ωn(k)) for k → ∞. This is shown for example in figure 3(a). Hence the integrals of
(3.2) and (3.3) are convergent. Note that at large time t ≫ ǫ, the time-dependent error
functions in (3.4) and (3.5) tend to unity and both an and bn approach values which do
not depend on time. Hence φg (3.2) and φc (3.3), respectively, represent transient gravity
and HA waves generated by the sudden application of the surface pressure disturbance
Pa. Expressions (3.2) and (3.3) are rather complicated to study either analytically or
numerically. Motivated by this fact, in the following section we shall derive simplified
expressions upon solid physical grounds, which will prove very useful to obtain a clearer
physical picture of the phenomenon.

3.1. Approximated expressions

Let us start from the hydro-acoustic potential φc (3.3). First consider the relevant dis-
persion relation (2.23) and rewrite it as

δn(k) =
gh

ω2
nh

2
=

−1

βnh tanβnh
. (3.6)
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Supported by the fact that HA waves travel much faster than surface gravity waves
(Lighthill 1978), we seek an approximation of (3.6) by assuming that gravity has little
effect on the HA wave propagation. Mathematically, this translates into the assumption
δn ≪ 1 for all n, whose accuracy we shall discuss shortly. An approximated form of (3.6)
can now be obtained in the limit δn → 0+, which then yields βnh → Bn = (2n− 1)π/2.
Taylor-expanding (3.6) in the neighbourhood of βnh = Bn, using (2.23) and neglecting
terms of order O(δn) and higher finally gives

ωn(k) ∼
c

h

√

B2
n + (kh)2, (3.7)

which is an approximated form of the dispersion relation for the nth HA mode. In order
to check the degree of accuracy of such an approximation, let us substitute (3.7) back
into (3.6), so that

δn(k) ∼
gh

c2
1

B2
n + (kh)2

6
8

π
2
γh, (3.8)

where γ = g/(2c2) ≃ 2.18× 10−6m−1 is the small Longuet-Higgins parameter (Longuet-
Higgins 1950). Expression (3.7) yields an upper bound

δ̃ =
4

π
2

gh

c2
=

8

π
2
γh

for the sought order of approximation of (3.7). Note that δ̃ is proportional to the square
of the ratio between the speed of propagation cg =

√
gh of the leading gravity wave (Mei

et al. 2005) and the speed of sound in water, which is usually much larger than cg. For

example, considering h = 150m and c = 1500m/s gives δ̃ ≃ 2.65× 10−4 ≪ 1. Note also
that δn ∼ n−2 at large n, so that the HA modes have increasingly less influence on the
wave field as their modal number increases. Within this framework, Taylor-expanding
(3.3) in series of δn ≪ 1 and neglecting the higher-order terms yields finally

φc(x, z, t) = − I0c
2

πρ0h2

+∞
∑

n=1

(−1)nBn cos (Bn(1 + z/h))

∫ +∞

0

e−(σk/2)2

ω2
n(k)

× [an(k, t) cos(ωn(k) t) + bn(k, t) sin(ωn(k) t)] cos kxdk, (3.9)

where the ωn are given by (3.7). Note that cosBn = 0 for all n = 1, 2, . . . Within the
approximation δ̃ ≪ 1, expression (3.9) represents a compression wave which propagates
underwater, with no effect on the horizontal velocity and on the pressure at z = 0. Let
us now consider the gravity wave potential φg (3.2). Again, the large difference cg ≪ c
makes in turn the gravity wave almost independent of the HA modes, the latter travelling
well ahead of the former. Within this framework, (2.22) gives β0 ∼ k and (3.2) simplifies
to

φg(x, z, t) = − I0
2πρ0

∫ +∞

0

coshk(z + h)

coshkh
e−(σk/2)2

× [a0(k, t) cos(ω0(k)t) + b0(k, t) sin(ω0(k) t)] cos kxdk, (3.10)

where the well-known dispersion relation ω2
0 = gk tanhkh is obtained. Substituting the

simplified expressions (3.9) and (3.10) for φ = φg + φc into the dynamic boundary
condition (2.7) on the free surface and developing the algebra yields finally the expression
for the free-surface elevation

ζ(x, t) = − I0
4πρ0g

∫ +∞

0

e−(σk/2)2ω0(k) {a0(k, t) [sin (kx+ ω0(k) t)− sin (kx− ω0(k)t)]

− b0(k, t) [cos (kx+ ω0(k) t) + cos (kx− ω0(k)t)]}dk. (3.11)
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The latter is an even function of x ∈ R and physically represents the sum of left- and
right-going waves. The mathematical structure of (3.11) is similar to that of other tran-
sient water wave solutions (see e.g. Mei et al. 2005; Sammarco & Renzi 2008; Renzi &
Sammarco 2012). Note that (3.5) gives b0(k, 0) = 0; hence ζ(x, 0) = 0 as requested. Ex-
pression (3.11) confirms that, within the approximation δ̃ ≪ 1, the free-surface elevation
is not affected by the HA modes. In other words, the HA component of the free-surface
elevation is of an order O(δ̃) with respect to the gravity component and hence can be
neglected to calculate ζ. This result would not hold if the forcing surface pressure Pa

was a travelling wave whose dispersion relation matched that of any HA mode. In that
circumstance, resonant effects would occur and the surface displacement would be dom-
inated by the HA modes. Furthermore, note that the HA component (3.9) can have
effects on the vertical velocity which are relevant to the generation of microbaroms in
the atmosphere (Waxler & Gilbert 2006; Ardhuin & Herbers 2013).
Employing a similar procedure to that used for ζ, but with the Bernoulli equation

(2.4), yields the dynamic pressure pd = pg + pc, where

pg(x, z, t) = − I0
4π

∫ +∞

0

coshk(z + h)

coshkh
e−(σk/2)2ω0(k) {a0(k, t) [sin (kx+ ω0(k)t)

− sin (kx− ω0(k)t)]− b0(k, t) [cos (kx+ ω0(k)t) + cos (kx− ω0(k)t)]}dk +

+
2I0
π3/2ǫ

e−(t/ǫ)2
∫

∞

0

coshk(z + h)

coshkh
e−(σk/2)2 cos kxdk (3.12)

is the gravity pressure component and

pc(x, z, t) = − I0c
2

2πh2

+∞
∑

n=1

(−1)nBn cos[Bn(1 + z/h)]

{

∫ +∞

0

e−(σk/2)2

ωn(k)
{an(k, t)

× [sin (kx+ ωn(k)t)− sin (kx− ωn(k)t)]− bn(k, t) [cos (kx+ ωn(k)t)

+ cos (kx− ωn(k)t)]}dk − 8√
πǫ

e−(t/ǫ)2
∫

∞

0

e−(σk/2)2

ω2
n(k)

cos kxdk

}

(3.13)

is the HA pressure component, i.e. the sought underwater compression wave. Note that
the gravity component pg (3.12) is the sum of two integral terms. The first one is as-
sociated with the transient propagating surface wave (3.11), while the second decays
exponentially with time like Pa (3.1) and therefore is a source-related term. Also, the
HA pressure pc (3.13) is the sum of a transient propagating underwater compression wave
and an evanescent term which decays exponentially with time. The separation between
propagating and evanescent acoustic waves was also obtained in previous work analysing
R and AG solutions (Kibblewhite & Ewans 1996; Ardhuin & Herbers 2013). Note that the
vertical cosine dependence of the HA pressure modes in (3.13) implies the HA pressure
be largest at the bottom, despite the forcing is applied on the free surface! Incidentally,
further approximated expressions of the propagating waves may be obtained by using
the method of stationary phase as in Stiassnie (2010).
The present model yields new results with respect to established incompressible and

compressible theories. The incompressible theory (Mei et al. 2005) naturally fails to
capture the underwater HA pressure wave travelling ahead of the surface gravity wave.
Previous compressible models (Longuet-Higgins 1950; Ardhuin & Herbers 2013; Ardhuin
et al. 2013), though providing a basis for the present analysis, did not consider the first-
order effects of compressibility in the co-generation of HA and gravity waves directly by
a sudden, localised pressure disturbance. Our new results show that the HA pressure
signal pc (3.13) can be interpreted as the “acoustic signature” of the surface gravity wave
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Figure 3. (a) Behaviour of a0 (3.4) and b0 (3.5) versus k for t = 0.5 s and ǫ = 1 s. (b)
Space-time density plot of the free-surface elevation ζ (3.11) generated by the double-Gaus-
sian pressure distribution Pa (3.1). (c) Time series of the gravity pressure component pg (3.12)
at (x0,−h) = (100,−150)m. (d) Time series of the HA pressure component pc (3.13) at (x0,−h).
(e) Time series of the total dynamic pressure pd = pg+pc at (x0,−h). The parameters for figures
(b)–(e) are: I0 = 1.57×104 Ns/m, σ = 5m, ǫ = 1m and h = 150m. The first 50 acoustic normal
modes are considered. Note that pd = 0 at t = 0 in accordance with the condition (2.11) of
hydrostatic pressure distribution in the inner layers of the fluid at t = 0.

ζ (3.11) generated by the application of a surface pressure disturbance localised in space
and time. A numerical example further illustrates this novel result.

4. Numerical example

Figure 3(b) shows the space-time density plot of the free-surface elevation ζ (3.11),
generated by the double-Gaussian perturbation Pa (3.1) of parameters I0 = 1.57× 104N
s/m, 2σ = 10m and ǫ = 1 s, for which Pa(0, 0) = 2000Pa. This value roughly corresponds
to the pressure ρairv

2/2 applied by the air moving at speed v = 55m/s, with ρair ≃
1.2 kg/m3. The water depth is h = 150m. Soon after the surface pressure is applied, a
trough forms close to the origin. At larger time, new surface waves are generated. Leading
long waves travel faster and are followed by tails of shorter waves, as predicted also by
the incompressible model of Mei et al. (2005). However, the limits of the incompressible
theory appear clearly in figures 3(c) and 3(d). These show, respectively, the gravity
(3.12) and HA (3.13) components of the dynamic pressure pd, evaluated at the bottom
z = −h, at x = x0 = 100m, that is x0/(2σ) = 10. Numerical analysis reveals that
the gravity component pg is much smaller than the HA term pc. Figure 3(e) shows the
time series of the dynamic pressure pd = pg + pc at the bottom. The signal reaches

the observation point (x0,−h) at t ≃ 0.12 s, that is roughly t ≃
√

x2
0 + h2/c. The fluid

elements are initially compressed and then relaxed by the first pressure wave. The latter
is followed by a train of waves with decreasing amplitude (see again figure 3e), generated
by the boundary reflections of the initial pressure perturbation. Such reflections are
characterised by longer travel times than the first signal and, because of their transient
nature, experience an increasingly stronger attenuation with time. The average zero-up-



Hydro-acoustic precursors of surface gravity waves 11

crossing frequency of the pressure wave is f ≃ 2.5Hz. This corresponds to the cut-off
frequency f0 = c/(4h) of the first HA mode, which is indeed dominant (Eyov et al. 2013).
Such a frequency falls outside the typical range of ultra-low-frequency (ULF) R and AG
waves produced by second-order wave-to-wave interactions described by Ardhuin et al.

(2013). Therefore HA waves generated by sudden surface pressure disturbances seem to
possess a peculiar frequency signature which favourably sets them apart from R and
AG signals. Note also from figure 3(e) the characteristic spiky behaviour of the pressure
signal, which pulsates in a saw-chain fashion. This happens since the HA pressure wave
is little influenced by the restoring action of gravity. The latter smooths the free-surface
elevation but not the pressure signal, which then reveals its original impulsive generation
mechanism also at later instants. Finally, comparison of figures 3(b) and 3(e) shows that
the first HA pressure signal reaches the observation point (x0,−h) at t ≃ 0.12 s, much
in advance than the arrival at x0 of the surface gravity wave, which occurs at about
t = 5 s. Therefore, the numerical example of figure (3) confirms that HA pressure waves
exist as precursors of the surface gravity waves generated by sudden surface pressure
variations. For example, they remind of the capillary forerunners of the initial excitation
induced in a thin layer of mercury before the arrival of the gravity perturbation (Falcon
et al. 2003). However, while the latter are observed on the fluid surface, the HA waves
are to be detected below the surface, e.g. by means of modern hydrophones. We also
carried out calculations at larger distance from the origin. Moving away from the source,
both the surface gravity wave and the HA pressure signal attenuate more strongly in our
simulations than in those of Stiassnie (2010) and Sammarco et al. (2013) for earthquake-
generated waves. This is likely because large-scale earthquakes yield a stronger energy
release than localised atmospheric disturbances. This fact does not hinder the practical
importance of our results: HA waves could be used to design alert systems for coastal
flooding generated by nearby atmospheric perturbations.

5. Conclusions

We showed that sudden, localised pressure changes on the free surface of an ocean can
generate a system of hydro-acoustic (HA) pressure waves which are the precursors of
the associated surface gravity waves. This result provides an advancement on established
incompressible theories, which naturally fail to capture HA waves, and on previous com-
pressible models, which did not consider such dynamics. Numerical calculations show
that the underwater compression waves can be interpreted as the “acoustic signature”
of the surface gravity wave. This dynamics can be exploited to design innovative coastal
flooding warning systems based on the detection of underwater compression waves as the
forerunners of the surface gravity waves. Additional work is being carried out to extend
this fundamental theory to three-dimensions, uneven elastic bottom (Eyov et al. 2013)
and travelling disturbances, for which a numerical approach, in the style of Sammarco
et al. (2013), would be required.
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