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A mathematical model is described to analyse the

hydrodynamic behaviour of a wave energy farm

consisting of oscillating wave surge converters in

oblique waves. The method is a highly efficient semi-

analytical approach based on the linear potential flow

theory. Wave farms with a large number of such

devices are studied for various configurations. For

an inline configuration with normally incident waves,

the occurrence of a near resonant behaviour, already

known for small arrays, is confirmed. A strong wave

focussing effect is observed in special configurations

comprising of a large number of devices. The effects

of the arrangement and of the distance of separation

between the flaps are also studied extensively. In

general, the flaps lying on the front of the wave

farm are found to exhibit an enhanced performance

behaviour in average, due to the mutual interactions

arising within the array. The hydrodynamics of two

flaps that oscillate back to back is also discussed.

1. Introduction
Wave farms comprising of a large number of wave

energy converters (WECs) are planned at sites which

have already been identified for the purpose of

energy extraction (e.g. Lewis Wave Project, see [1]).

The arrangement of the devices in such a farm can

follow several possible configurations. The present study

analyses the interaction of waves with an array of

oscillating wave surge converters (OWSCs) and the

performance of such systems. The OWSC considered

here is a bottom hinged flap-type WEC which extracts

energy by virtue of its pitching motion and resembles the

Oyster R© developed by Aquamarine Power Ltd.

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:dripta.sarkar.1@ucdconnect.ie


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Figure 1. A computer generated 3D graphical view of a portion of a wave farm comprising of five OWSCs.

Wave power absorption in an array has already been studied in the literature, starting with the

seminal work of [2]. However, the majority of the investigations deal with the hydrodynamics of

point absorbers, which is based on the assumption that the body dimensions are much smaller

than the wavelength of the incident wave field. Recent studies have shown that for OWSCs

like Oyster, the point absorber limit is no longer applicable and hence better and more accurate

modelling of the device needs to be undertaken [3]. Some recent investigations also dealt with

a detailed analysis of multiple WECs, but most of them did not go beyond three or four of

such devices ( [4], [5], [6], [7]). Indeed, in the literature there have been very few attempts to

understand the dynamics of large arrays. The analytical modelling of large and complex systems

becomes difficult, while numerical approaches on the other hand are computationally expensive

and performing such an analysis experimentally is quite challenging. Recently, [8] used a fast

multipole accelerated linearised boundary element method to study large arrays of sparsely

distributed generic WECs in deep water. However, despite the recent effort of [9], who devised a

new method to investigate the hydrodynamics of a small inline array of OWSCs, to date there is

still a need for an unifying theory of large arrays of OWSCs in any configuration and in oblique

waves. The analysis in this paper extends the semi-analytical work of [9] to investigate a large

farm of OWSCs in any configuration under oblique incident waves.

A mathematical model is developed here within the framework of linear potential theory. The

theory allows the analysis of arbitrary configurations of an array of OWSCs, the only constraint

being that all the converters have parallel pitching axes (see figure 1). The problem is formulated

as a boundary value problem for the radiation and scattering potentials. The use of Green’s

integral theorem yields hypersingular integrals (HIs) in terms of the jump in potential across

the sides of each flap, which are solved using a numerical approach in terms of the Chebyshev

polynomial of the second kind. The derivation of the mathematical model is quite general: one can

solve for the unknown jump in potential across each flap for arbitrary configurations of the array.

A wave farm consisting of various layouts of a finite array of OWSCs is then studied considering

complete hydrodynamic interaction among all the devices.

The first theoretical model based on HIs was developed for an OWSC in a channel [10] and

was then extended to study the hydrodynamics of an infinite array of WECs [11], a single device

in the open ocean [12] and a finite array of in-line converters [9]. Recently, the same method

was also used to analyse the hydrodynamics of a flap-type device near a straight coast [13].

Following the same approach, in this study we develop a mathematical model to investigate the

hydrodynamic behaviour for the most generalised case consisting of a large number of OWSCs

in any configuration with oblique wave incidence.

The generalised mathematical model is derived in the first part of the paper (§2 & §3). In §4,

the effect of the separation distance is studied in detail using three flaps. This is followed by

an analysis of both a wave farm comprising of thirteen flaps in various possible arrangements

and a wave farm of 40 inline flaps. Finally the semi-analytical model is employed to study the

hydrodynamics of two devices located back to back - a configuration which has intrigued many

(see [14]).
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Figure 2. Geometry of the physical model of a portion of an OWSC array: (a) plan view; (b) section of themth flap shown

with the physical parameters.

2. Mathematical Model

(a) Governing Equations

A wave farm of M OWSCs is considered to be located in an ocean of constant water depth h′.

Waves are incident from the right making an angle ψ with the x′−axis as shown in figure 2. The

origin is located on the mean free surface with y′ the pitching axis of the flaps and z′ directed

upwards. Primes in this mathematical model are used to denote the physical variables. With

the assumption of irrotational flow and inviscid, incompressible fluid, the velocity potential Φ′

satisfies the Laplace equation

∇′2Φ′ = 0, (2.1)

in the fluid domain, where ∇′f ′ = (f ′,x′ , f ′,y′ , f
′
,z′) is the nabla operator; subscripts with commas

denote differentiation with respect to relevant variables. The linearised kinematic-dynamic

boundary condition on the free surface gives

Φ′
,t′t′ + gΦ′

,z′ = 0, z′ = 0, (2.2)

where g is the acceleration due to gravity while the no-flux boundary condition at the sea bed

yields

Φ′
,z′ = 0, z′ =−h′. (2.3)

Each device is equipped with an oscillating flap hinged to a rigid foundation at a distance c′ above

the seabed (see again figure 2). The WECs are modelled using a thin-rigid plate approximation

(see [15]) and the kinematic boundary condition on their surface is then expressed as

Φ′
,x′ =−θm,t′(z′ + h′ − c′)H(z′ + h′ − c′), x′ = x′m ± ε′, ε′ → 0,

yA
′

m < y′< yB
′

m , m=1, ..,M, (2.4)

where x′m is the x′ coordinate of the centre of themth flap while yA
′

m and yB
′

m are the y′ coordinates

corresponding to the two edges of the device.

Like in previous work ( [3,9–13]), a non-dimensional system of variables is chosen as

(x, y, z, r) = (x′, y′, z′, r′)/w′, t=

√

g

w′
t′, Φ=

Φ′

√

gw′A′
I

, θm = (w′/A′
I)θ

′
m, (2.5)

where w′ is the length scale of the system (e.g. the width of the largest flap) and A′
I is the

amplitude of the incident wave. Assuming the oscillation of the flaps to be simple harmonic in
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nature, the time dependence of the variables can be separated out as

θm =Re{Θm exp−iωt}, Φ=Re{φ(x, y, z) exp−iωt}, (2.6)

where ω =ω′
√

w′/g and Θm are respectively, the angular frequency and amplitude of oscillation

of the mth flap, while φ(x, y, z) is the complex spatial velocity potential. The spatial potential can

in turn be resolved into

φ= φS + φR

= φI + φD +
M
∑

β=1

Vβφ
(β) (2.7)

where

φI =− iAI
ω

cosh k(z + h)

cosh kh
exp−ikx cosψ+iky sinψ (2.8)

is the incident wave potential. In (2.7), φD is the diffracted wave potential, φ(β) is the radiation

potential induced by the motion of the β-th flap while the other flaps are held fixed and Vβ = iωΘβ
is the complex angular velocity of the moving flap. Also note, in 2.8, k is the solution to the

dispersion relation ω2 = k tanh kh. On substitution of the factorisation (2.6) and (2.7) in the

governing equations (2.1)–(2.4), we obtain a boundary value problem in terms of the spatial

radiation and scattering potentials. These potentials satisfy the Laplace equation

∇2φ(β,D) = 0, (2.9)

where the notation φ(β,D) denotes either potential, the linearised free-surface boundary condition

− ω2φ(β,D) + φ
(β,D)
,z = 0, z =0, (2.10)

the no-flux boundary conditions at the sea bed

φ
(β,D)
,z =0, z =−h, (2.11)

and the kinematic conditions on the lateral surfaces of the flaps

φ
(β)
,x = (z + h− c)H(z + h− c)δβm, x= xm ± ε, ε→ 0, yAm ≤ y ≤ yBm, (2.12)





 φD,x =−φI,x (2.13)

for β = 1, 2, · · · ,M , δnm being the Kronecker delta. Finally, both φ(β) and φD are required to be

outgoing disturbances of the wave field [16]. The vertical dependence can now be isolated out of

the three dimensional governing system (2.9)–(2.13) by using the separation (see [9,12,16]):

φ(β,D)(x, y, z) =
∞
∑

n=0

ϕ
(β,D)
n (x, y)Zn(z), (2.14)

where

Zn(z) =

√
2 cosh κn(z + h)

(h+ ω−2 sinh2 κnh)1/2
, n= 0, · · · ,∞ , (2.15)

are the normalised vertical eigenmodes satisfying the orthogonality relation

∫0
−h

Zn(z)Zm(z)dz= δnm. (2.16)

In (2.15), κ0 = k and κn = ikn are the solutions of the dispersion relation

ω2 = k tanh kh, ω2 =−kn tanh knh, n=1, 2, · · · , (2.17)

respectively.
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Using the decomposition (2.14) and the orthogonality relation (2.16) yields a two-dimensional

governing system for ϕ
(β,D)
n , where the Laplace equation (2.9) becomes the Helmholtz equation

(∇2 + κ2n)

{

ϕβn
ϕDn

}

=0, (2.18)

and the kinematic conditions on the flap (2.12) become
{

ϕβn,x
ϕDn,x

}

=

{

fnδβm
AId

m
n e

iky sinψ

}

x= xm ± ε, ε→ 0, yAm < |y|< yBm, (2.19)

where

fnβ =

√
2[κn(h− c) sinh(κnh) + cosh(κnc)− cosh(κnh))]

κ2n(h+ ω−2 sinh2(κnh))1/2
(2.20)

and

dmn =
k cosψ(h+ ω−2 sinh2 kh)1/2√

2ω cosh kh
[cos(kxm cosψ)− i sin(kxm cosψ)]δ0n (2.21)

are integration constants depending on the geometry of the system. Finally the ϕ
(β,D)
n must be

outgoing disturbances for r→∞. The boundary value problem (2.18) – (2.19) is solved with the

application of Green’s integral theorem, similar to the procedure followed in [10]. The formulation

yields HIs which are solved using the Chebyshev polynomials of the second kind (see Appendix

A for details). Finally the solution for the β-th mode radiation potential is obtained as

φ(β)(x, y, z) =− i

8

+∞
∑

n=0

κnxZn(z)
M
∑

m=1

wm

P
∑

p=0

a
(β)
pnm

∫1
−1

(1− u2)1/2Up(u)

×
H

(1)
1

(

κn

√

(x− xm)2 + (y − uwm + 2yCm
2

)2

)

√

(x− xm)2 + (y − uwm + 2yCm
2

)2

du, (2.22)

where wm = yBm − yAm is the non-dimensional width of the mth flap, Up is the Chebyshev

polynomial of the second kind and order p, p= 0, 1, · · · , P ∈N, H
(1)
1 is the Hankel function of

the first kind and first order, yCm the y coordinate of the center of flap m while a
(β)
pnm are the

complex solutions obtained using a numerical collocation scheme (see Appendix A). The solution

to the spatial diffraction potential is expressed as

φD(x, y, z) =− i

8
AIkxZ0(z)

M
∑

m=1

wm

P
∑

p=0

bp0m

∫1
−1

(1− u2)1/2Up(u)

×
H

(1)
1

(

k

√

(x− xm)2 + (y − uwm + 2yCm
2

)2

)

√

(x− xm)2 + (y − uwm + 2yCm
2

)2

du, (2.23)

where the bp0m are the complex solutions of a system of equations, again solved numerically. Note

that in φD (2.23) only the 0th order vertical mode is present, the flaps being walled structures in

the scattering problem (i.e ϕDn = 0 for n> 0). Using the above expressions (2.22) and (2.23), the

equation of motion of the flap can be now solved.

(b) Hydrodynamic Parameters

The solution for the velocity potential is then used to solve the equation of motion of each

individual flap in the frequency domain. Suppose for the α-th flap, Iα = I ′α/(ρw
′5
α ) is the second
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Figure 3. (a) Plan view of two OWSCs in a staggered configuration as analysed in [9]; (b) Comparison of excitation torque

on two flaps versus incident wave period. The solid line and the dotted line represent the variation of F ′ of flap 1 and 2

respectively, obtained using the semi-analytical approach presented here, while the squares and the diamonds are from

the numerical analysis presented in [9]. Results are shown for A′

I
=1m, h′ =13m, w′ =26m and c′ = 4m.

moment of inertia and Cα =C′
α/(ρgw

′4
α ) is the coefficient of the flap restoring buoyancy torque.

Then its non-dimensional equation of motion can be expressed as shown in [9]

[−ω2(Iα + µαα) + Cα − iω(ναα + νptoα )]Θα −
M
∑

β=1

[ω2µβα + iωνβα]Θβ =Fα . (2.24)

In the latter,

µβα =
πwα
4

Re

{

∞
∑

n=0

fnαa
(β)
0nα

}

(2.25)

is the added moment of inertia,

νβα =
πωwα

4
Im

{

∞
∑

n=0

fnαa
(β)
0nα

}

(2.26)

is the radiation damping and

Fα =−πωwα
4

iAIb00αf0α (2.27)

is the excitation torque (see [9]). Also in (2.24), νptoα = νpto
′

α /(ρw
′5
α

√

g/w′
α) is the power take-off

(PTO) damping coefficient of the α-th flap and following [4], is set equal to the optimal PTO

damping for the same OWSC isolated in the open ocean:

νptoα =

√

[Cα − (Iα + µopenα )ω2)]2

ω2
+ (νopenα )2, (2.28)

where µopenα and νopenα are respectively the added moment of inertia and radiation damping of

the α-th OWSC isolated in the open ocean. According to the theory of damped oscillating systems

(see [17]), the average extracted power by the wave farm over a wave period is

P =
1

2
ω2

M
∑

i=1

νptoi |Θi|2. (2.29)

The performance of the system is measured with the interaction factor q, defined as the ratio of

total power captured by an array of M flaps to the power captured by an isolated WEC of the
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same type multiplied by M :

q=
P

MPsingle
. (2.30)

A value of q > 1 implies that there is a gain in the net power output from an array because

of constructive interaction amongst the flaps. On the other hand, q < 1 indicates that mutual

interactions have a cumulative destructive influence on the array efficiency. However, the

interaction factor q (2.30) doesn’t quantify the performance of individual array elements. In order

to understand the performance dynamics of each WEC in an array, [4] defined a term qmodm given

by

qmodm =
Pm − Psingle
max(Psingle)

, m= 1, 2, · · · ,M , (2.31)

where Pm is the power captured by the mth flap while max(Psingle) is the maximum value of

Psingle in the considered range of incident wave periods. The parameter qmodm represents the array

induced performance modification of each individual WEC, with qmodm > 0 implying a beneficial

influence and qmodm < 0 a negative interaction effect. The two terms q and qmodm together can

reasonably describe the global and single scale performance behaviour of an array configuration.

Figure 4. Two configurations of a three-flap array are shown here. In both cases the spacings are uniform and normal

incidence is considered. In (a) the two lateral flaps are located along the same x′ coordinate which makes the system

symmetrical about the x′−axis while (b) represents a non-symmetrical configuration.

3. Algorithm implementation and computational cost
An algorithm based on the mathematical model described here has been implemented through

a code written in Mathematica R© 8. The algorithm and the code have been made as general

as possible and can handle a large number of flaps in any staggered configuration. The code

requires no modification if the number of flaps or their configuration/positions are changed.

Only the coordinates of the flap centres need to be changed. The other required inputs to the

code are the flap width, distance from the sea bottom to the hinge, water depth, incident wave

amplitude, range and number of incident wave periods, angle of oblique wave incidence, moment

of inertia and buoyancy torque of the flap and total number of vertical eigenmodes, order of

Chebyshev polynomials and terms in the remainder of the Hankel function (see (A 8)). A relative

error of O(10−3) is obtained with the first three vertical eigenmodes and sixth-order Chebyshev

polynomials. From a computational point of view, the semi-analytical approach described here

is extremely efficient compared with a full numerical approach. The latter has been used in [9]
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to model a three-flap inline and a two-flap staggered configurations. The computational expense

associated with the full numerical approach was on an average 1 hour for a single wave period

evaluation performed on a computer equipped with an i7 2.67 GHz CPU and 12GB RAM.

Computations with the semi-analytical model presented here were performed with an i7 3.40

GHz CPU and 16GB RAM equipped computer. For the assessment of a system of thirteen flaps

only six minutes are required in average for each wave period.

4. Results
The computations are performed for several configurations of OWSCs, each one closely

resembling the Oyster800 WEC developed by Aquamarine Power Ltd. The parameters of the

system are reported in Table 1.

Table 1. Dimension of the physical variables

A′
I w′ h′ c′

0.3m 26m 13m 4m

In the following, we shall validate the computational model with available theoretical and

numerical results. Then we will discuss the interactions arising in a simple three-flap cluster and

further show the potential of the model in handling more complex and populated arrays.

(a) Validation

The solution obtained for an inline array (xm = 0, m= 1, 2, · · · ,M ) of flaps and normal incidence

(ψ= 0◦) is exactly the same as shown in [9] and consequently the same results are obtained for

the two-flap inline and three-flap inline cases as presented in [9]. For staggered configurations,

results for only two flaps are available in literature and have been obtained with a numerical

tool [9]. Figure 3 shows the variation of the excitation torque versus time period of the incident

wave for the two-flap staggered case of [9]. A fairly consistent agreement is observed in the results

obtained by the current model and the numerical approach of [9].

(b) Three-flap cluster

In order to understand the effects of the mutual interactions arising in a wave farm, we first

consider a basic array cluster comprising of only three flaps and we focus our attention on

the performance of the flap positioned centrally amongst them. This central flap in a way

represents an OWSC located well within an array, where the hydrodynamic influences of only

its two neighbouring devices are dominant. We consider both symmetrical and non-symmetrical

configurations of the three flaps with essentially uniform spacing between them in normally

incident waves.

Let us first consider the case of the symmetrical configuration shown in figure 4(a). Here the

distance d′, measured from the central flap, is positive in the positive x′−direction. Therefore

d′ > 0m represents the case when the central flap is located behind the two lateral flaps, while

d′ < 0m indicates otherwise. Figure 5 plots the qmod2 of the central OWSC for various distances

of separation. Each of the sub-plots shows the behaviour for a particular value of the lateral

distance b′ while varying d′. It can be observed that d′ > 0m is associated with a strong destructive

influence on the central flap’s performance across the entire operating range of periods. On

the other hand, for d′ < 0m, positive interaction effects dominate and significantly enhance the
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Figure 5. Variation of qmod
2

versus incident wave period for the central flap for the symmetrical three-flap cluster

configuration shown in figure 4(a). Each of the sub-plots shows the qmod
2

variation for a particular value of b′ while

the distance d′ is varied.

performance of the central flap, suggesting that an OWSC will have better power absorption

characteristics when located at the front of the cluster. The most important thing to note is that for

the situations considered here, the qualitative behaviour of the qmod variation is determined by d′,

while b′ primarily dictates the extent of the peaks (see again figure 5). In general, as the distance



10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

5 6 7 8 9 10 11 12 13 14 15

q
 m

o
d

T' (s)

b' = 0 m

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

5 6 7 8 9 10 11 12 13 14 15

q
 m

o
d

T' (s)

d'= 5 m d'=10m

d'= 15m d'= 20m

d'= 25m Series1

b' = 5 m

(b)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

5 6 7 8 9 10 11 12 13 14 15

q
 m

o
d

T' (s)

b' = 10 mb' = 10 mb' = 10 m

(c)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

5 6 7 8 9 10 11 12 13 14 15

q
 m

o
d

T' (s)

b' = 15 m

(d)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

5 6 7 8 9 10 11 12 13 14 15

q
 m

o
d

T' (s)

b' = 20 m

(e)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

5 6 7 8 9 10 11 12 13 14 15

q
 m

o
d

T' (s)

b' = 25 m

(f)

(a)

Figure 6. Variation of qmod
2

versus the incident wave period of the central flap for the non-symmetrical 3-flap cluster

configuration shown in figure 4 (b). Each of the sub-plots shows the qmod
2

variation for a particular value of b′ while the

distance d′ is varied.

b′ is increased there is a shift in the qmod variations towards higher periods, accompanied by a

reduction in the magnitude of the peaks, which means a decrease in the interaction amongst the

flaps. It can be inferred that as b′ is further increased, there would be a larger number of local

maxima and minima of reduced magnitudes and so on average, there would be no distinctive
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Figure 7. Five possible layouts of a 13 OWSC wave farm are shown here. The magnitude of the spacings between

neighbouring flaps in all the cases is fixed at 20m in the y−direction and 15m in the x−direction.

positive or negative interaction effect on the device performance for any value of d′.

Now we consider the case where the layout of the flaps with respect to the centreline of the

middle OWSC is non-symmetrical, as shown in figure 4(b). The noticeable difference with the

previous arrangement is that the pitching axes of the extreme flaps are now separated from that

of the central flap in opposite directions. The qmod2 variation of the central flap for the various

cases is plotted in figure 6. Almost ubiquitously for the range of distances considered, such a

configuration has a negative influence on the WECs performance. This is likely due to the opposite

interaction effects on the central OWSC by the two lateral flaps.

(c) Wave farm of 13 OWSCs

A wave farm consisting of 13 flaps in various configurations is shown in figure 7. Typically even

larger arrays could be studied using the same computational infrastructure mentioned previously

within a reasonable time. The spacing between the flaps is chosen similar to the one planned for

the proposed wave farm at the Isle of Lewis in Scotland [1]. For the purpose of identifying each

individual converter, the flaps are numbered in an increasing order from right to left of the array

with the OWSC located on the extreme right considered as flap 1. The distance between the edges

of the neighbouring flaps is 20m in the x′−direction for all the configurations shown in figure 7,

while the pitching axes of the neighbouring flaps in the staggered configurations are separated by

a distance of 15m. The wave farms considered in the analysis are symmetrical about the central

flap (flap 7), so for normal wave incidence the hydrodynamic behaviour is symmetric with respect

to the x′−axis passing through the center of the central flap.

Inline: The inline case corresponds to the configuration in which the pitching axes of all the flaps

are oriented along the same x′ coordinate. As first described by [9], a near resonant behaviour is

observed in this case which is similar to the resonance of an infinite array of inline OWSCs [11]

or a single OWSC in an open channel [10] (see figure 8a). At the near resonant period, the

performance of every individual OWSC is higher than in the isolated case and qmod has a peak for
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Figure 8. Variation of qmod of the individual OWSCs for the five layouts shown in figure 7. Since normal wave incidence

is considered here, the configuration is symmetrical about the central flap and the results are plotted for only seven flaps.

Flap 1 is the OWSC located in the extreme right of the array shown in figure 7 while Flap 7 is the central flap.

all the flaps. However such a behaviour is also accompanied by destructive influences at higher

periods. Amongst all the flaps, the outermost OWSC has a slightly distinguishable behaviour

from the others. This is due to the fact that while all the other OWSCs have neighbouring flaps

on both sides which generate the maximum influence, the outermost flap only experiences the

hydrodynamic influence of the converters located on one side. Let us now consider a case of

oblique wave incidence on inline OWSCs. As expected, the behaviour of the wave farm is no

longer symmetrical about its innermost flap. Figures 9(a) and (b) show the qmod of all the 13

flaps when ψ= 30◦. A similar near resonant behaviour is observed in this case as well. However,

the strongest near-resonant behaviour occurs for flap 1 and the magnitude of the peaks reduces

as one moves towards the other end of the array, with flap 13 showing a distinctively different

behaviour.

S1: In such a configuration, the OWSCs are placed in a zigzag manner with the array comprising

of two rows of devices. The flaps located in the same row have similar hydrodynamic behaviour,

as seen in figure 8(b) . Flaps 3, 5 & 7, which are positioned in the front, have almost the same
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Figure 9. Variation of qmod of 13 flaps in an inline configuration for oblique wave incidence ψ= 30
◦: (a) Flap 1 to Flap

7; (b) Flap 7 to Flap 13.

Figure 10. Response amplitude operator (RAO) of the free surface elevation in a wave farm of 13 flaps in the staggered

S1 configuration shown in figure 7 for an incident wave period T ′
= 5sec.

qmod variation and similar are the behaviours of flaps 2, 4 & 6. However, the performance

characteristics of the flaps in the two rows are in striking contrast, with the maxima in qmod

of the OWSCs in the front row corresponding to the minima of the OWSCs in the back row and

vice versa. This happens since a flap in the front row experiences the maximum constructive

interaction, as already anticipated in the cluster analysis of §4(b). Figure 10 plots the response

amplitude operator (RAO) of the free surface elevation (|ζ′/A′
I |) for an incident wave period of

5 seconds in the region surrounding the wave farm. There is hardly any noticeable change in the

wave field in front of the array, but in the immediate wake behind the WECs there is a strong

reduction in the wave elevation, meaning a less energetic wave field available for extraction by

the back row.

S2: Here the devices are again placed in a zigzag distribution but now there are three rows in this

configuration. Flaps 3 and 7 are located in front of the array and experience a beneficial influence

due to constructive interactions leading to relatively high values of qmod (see figure 8c). One

can again note the similarity in the behaviour of the OWSCs in the second row (flaps 2, 4 and

6). Finally, flap 5, the only non-external flap to be located on the last row, has a predominantly

negative qmod factor. The behaviour is indeed similar to that obtained from the corresponding

configurations of the three-flap cluster of §4(b).

S3: The layout of this array resembles an inverted ’V’ shape, pointing away from the coast. Figure
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8(d) shows the qmod variation of the flaps in such a configuration. The most striking behaviour is

of the foremost WEC (flap 7). Indeed, one could have expected it to have a positive qmod factor

based on the behaviour observed in the cluster model of §4(b). However, the magnification of the

qmod factor in this case is further enhanced by what we believe to be a strong focussing effect.

In the S3 configuration (see again figure 7) all the flaps behind the central one reflect back some

amount of incident wave energy. As a consequence, more energy is available for extraction by the

foremost device (flap 7), resulting in the peak of the relevant qmod in figure 8(d). A further insight

into such dynamics is offered by figure 12, which shows the excitation torque on the flaps in the S3

configuration. The variation of the excitation torque is similar to that of the qmod factor of figure

8(d) and one can notice a sharp increase in |F ′| for flap 7 at the same peak period (T ′ ∼ 7.2s). Such

a behaviour again corroborates the well known fact that the dynamics of the OWSCs like Oyster

is primarily torque-driven (see [3,10,12]).

0.8

0.9
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1.3

5 6 7 8 9 10 11 12 13 14 15

q

T' (s)

Series6

13 flaps inline

13 flaps S1

13 flaps S2

13 flaps S3

13 flaps S4

40 flaps inline

Figure 11. Variation of the performance parameter q for the five different layouts of 13 flaps as shown in figure 7 and an

inline layout of a wave farm comprising of 40 flaps.

S4: Here again the outermost flaps, which are located in the front, record the highest peak in the

qmod factor (see figure 8e). However, although the configuration mirrors to the previous one, there

is no such equivalent constructive focussing effect on the central flap (flap 7).

An overview of the general behaviours of all the systems is provided in figure 11. Here the

variation of the global performance parameter q (2.30) is plotted against the period of the incident

wave. Overall, the strongest constructive interaction is achieved in the inline system, while the

staggered systems S1 and S2 show the least constructive interference between the flaps, mainly

due to the poor performance of the back row because of the sheltering effect of the front row

(e.g. see figure 10). This confirms the earlier findings of [9] for a smaller system. Finally, the

configurations S3 and S4, for which the net power output is the same, show a smaller peak than

the inline configuration, but an overall better performance according to the q indicator. It is worth

to mention that our analysis is based purely on the hydrodynamic performance of the system.

Other aspects (environmental impact, site bathymetry, etc.) could of course orient the designer

towards a less effective configuration from the hydrodynamic viewpoint. Nevertheless, such a
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Figure 12. Behaviour of the excitation torque |F ′| on individual flaps versus incident wave period for a 13-flap array in

the staggered S3 configuration.

hydrodynamic analysis is a first step towards the effective design of such a costly system.

(d) 40 flaps inline

The proposed 40MW wave farm off the north-west coast of Lewis, Scotland is expected to have a

deployment of around 40 to 50 Oyster devices on an approximate 3.2 kilometre stretch of coast. In

order to check the reproducibility of the results obtained from the small wave farm cases in such

large configurations, a simulation of 40 OWSCs in a simple inline configuration is performed.

The general geometry is considered to be the same as in the 13 flap configuration. In figure 11 the

variation of the q factor for the 40 flap configuration is plotted. The behaviour is indeed similar to

that of the 13 flap inline case and the near-resonant behaviour is again confirmed with a slightly

larger spike tending towards that of an infinite number of OWSCs (see again [9] and [11]). It can

be reasonably inferred that the general behaviour in other configurations would be similar to that

in the smaller wave farm case with sharper spikes and troughs.

(e) Two flaps back to back

Two flaps with their centres along the same y′ coordinate are studied here (see figure 13). It is

expected that such a configuration would result in strong hydrodynamic interaction between

the two devices. [14] were the first to analyse the behaviour of two top hinged independently

oscillating rolling plates in deep waters as a WEC. The novel concept motivated a few other

studies [18], where one of the major drawbacks of such system was identified to be its strong

directional sensitivity to wave incidence and the concept was thereafter shelved. Surprisingly, the

idea was not pursued in shallow waters where the waves are predominantly directional. In this

study we are going to explore if it is wise to place two OWSCs back to back.
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Figure 13. Geometry of the physical model of two back to back OWSCs: (a) side view; (b) top view. The distance of

separation between the flaps is denoted by d′ in this case.

Figure 14 plots the behaviour of the excitation torque (|F ′|), radiation damping (ν′), added

inertia (µ′) and the performance indicator qmod versus the non-dimensional parameter kd for d′ =

50m. The qualitative variation of the hydrodynamic parameters of the front flap has resemblance

to that observed in the case of an OWSC in front of a straight coast [13]. In the latter, periodic

occurrences of extremes are observed in the variation of the excitation torque, with the minima

occurring at integral values of kd/π. Also, sharp spikes are observed in the variation of the

radiation parameters at values a little less than kd= (m+ 1/2)π, m= 1, 2, · · · . In the case of the

two flaps analysed here, the hydrodynamic behaviour of the front OWSC is similar to that of

a flap in front of a straight coast, with however, reduced peaks and a shift where the extremes

occur.

As far as the performance of the devices is concerned, the average value of qmod of Flap 1 is

higher than that of Flap 2 (see figure 14(b)). The constructive interference effects on Flap 1 are very

strong at kd≈ 5 where qmod almost reaches a value of 0.5. Flap 2 (back OWSC) always captures

less power than a single isolated OWSC, which means that the interaction effects are always

destructive on its performance. The primary reason for such a behaviour is that the back flap

lies in the wake field created by the front flap where the wave energy is reduced. Figure 14 shows

the variation of q for various values of the distance d′. For d′ = 25m, the destructive interaction

effects are quite significant and q≈ 0.5 at an incident wave period of about 6 seconds. This means

that the total power captured by the two devices combined at that frequency is equivalent to the

energy extracted by an isolated single device. As the distance d′ is increased, the occurrence of

the humps in the variation of q increases but the magnitude of such deviations reduces as well.

The most important thing to note is that the constructive interference effects are much weaker

compared to destructive influences and on an average the two OWSCs in such a configuration

capture less power than two isolated WECs.

(f) Two Wave Farms

In reality, an ideal wave energy site may encourage the deployment of two consecutive wave

farms for energy harvesting. It is important to understand the dynamics of the system in such

cases especially with one of the wave farm lying in the energy shadow of the other. A simplified

case of two inline wave farm configurations, each comprising of 13 flaps is considered in normal

wave incidence (see figure 16). The analysis is performed in constant water depth to understand

the dominant interaction effects between the systems, although in reality, variations in depth are

expected to modify the behaviour slightly. The term qfarm is utilised to understand the effect of
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Figure 14. Behaviour for the case of two back to back OWSCs shown in figure 13 versus the non dimensional parameter

kd for d′ = 50m. (a) Magnitude of the excitation torque (|F ′|); (b) Radiation damping (ν′); (c) qmod; (d) Added inertia

(µ′).

the interaction on each of the wave farms and is defined as

qfarm =
Pfarm

Pfarmisolated
, (4.1)

where Pfarm is the total power captured by a particular wave farm while Pfarmisolated is that

by the same farm in an isolated environment. qfarm > 1 would mean that the presence of the

other farm has a net beneficial influence on power absorption characteristics of the particular

wave farm considered, while qfarm < 1 indicates otherwise. Figure 17 plots the variation of qfarm
versus the incident wave period of the two wave farms for various distances of separation. The

oscillatory behaviour of the qfarm factor is similar to that of the q factor observed in the two back-

to-back OWSCs case (see figure 15), with a higher number of such oscillations occurring for larger

distances of separation. For the range of distances considered, the qfarm factor of wave farm 1

is always less than 1 which indicates that such configurations will tend to have a detrimental

influence on the farm located nearer to the shore. However, a steady upward shift in the qfarm
factor of wave farm 1 is observed as the distance is increased which can be explained due to the

energy recovery in the wake of wave farm 2. The rate of energy recovery is in fact quite slow and

even for a distance of 2000 m, the qfarm factor is still below 1. On the other hand, wave farm 2 has

both detrimental and favourable interference effects. However, the magnitude of the oscillations

in its qfarm factor is much higher than that in wave farm 1. It is interesting that the bandwidths

of the oscillations are almost the same for the distances considered.
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Figure 16. Layout of the two inline wave farm configurations separated by a distance d′
farm

.

5. Conclusion
A mathematical model based on the linear potential flow theory has been used to analyse the

hydrodynamic interaction between multiple flap-type WECs in a wave farm. The semi-analytical

model can efficiently solve a reasonably sized OWSC wave farm which otherwise is difficult to

evaluate with a complete numerical approach. It is shown that the dynamics of each individual

OWSC in the wave farms considered in the analysis strongly depends on its location in the farm,

the wave frequency and the angle of oblique wave incidence. As the distance between the flaps
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Figure 17. Variation of qfarm versus incident wave period for (a) wave farm 1 and (b) wave farm 2.

increases, the mutual hydrodynamic interaction between them reduces and the behaviour of the

converters tends towards that of an isolated device. However, from an economic perspective, one

would want to maximise the number of devices at a particular wave farm location to extract more

power. This is important for nearshore devices like OWSCs as the space would be strictly limited

unlike for offshore converters.

Wave absorption by an array of 13 OWSCs is studied for some of its possible layouts. For an inline

configuration with normal incidence, a near resonant phenomenon is observed which becomes

stronger as the number of flaps is increased. However, for oblique wave incidence there is a shift in

the frequency of occurrence of this phenomenon with a slight increase in the resonant bandwidth

associated with it. In a particular configuration of the large array (S3), a large enhancement in the

performance of the front-most flap is observed. Such a behaviour is attributed to a sharp increase

in the excitation torque due to the focussing of waves by the other devices in the array. In general,

the converters which are located in front of the array experience a noticeable positive interaction

effect leading to a gain in their power capture. Such a favourable behaviour in the performance

of the foremost devices of the array is also reported in the recent study of [8]. In the case of two

back to back OWSCs located close to each other, the effect on the performance of the back flap

is found to be detrimental across its entire operating range, while the front OWSC experiences

regions of both positive and negative influences. And when two such flaps are considered as one

system, the destructive interference effects are found to be more important than the constructive

influences. Therefore such a system of two OWSCs is not recommended in reality. Also it is shown

that a system of two consecutive wave farms has in general a negative interaction effect on the

net performance of the wave farm located downstream.

In a practical wave farm design however, the layout of an array configuration could be

constrained by bathymetry variations which would affect the optimisation process. Although

no particular layout could be suggested which would lead to a gain in net wave farm energy

output across the entire operating range of the device, since the constructive interference effects

are usually accompanied by destructive influences as well, the study can help understand what

sort of variability in the performance of individual OWSCs one can expect.
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A. Semi-analytical Solution
The procedure to obtain the solution to the 2D spatial diffraction and radiation potential is

described in this section. Consider the 2D Green’s function

Gn(x, y; ξ, η) =
1

4i
H

(1)
0 (κn

√

(x− ξ)2 + (y − η)2), (A 1)

which satisfies the system of equations

(∇2 + κ2n)Gn =0, Gn =
1

2π
ln r as r→ 0, (A 2)

where r=
√

(x− ξ)2 + (y − η)2. Applying Green’s integral theorem to ϕn and Gn for the whole

fluid domain yields

ϕn(x, y) =− i

4

M
∑

m=1

∫yBm
yAm

∆ϕnmG
(0)
n,ξ

∣

∣

∣

∣

ξ=xm

dη, (A 3)

where ∆ϕnm = ϕn(xm − ε, y)− ϕn(xm + ε, y) denotes the modal potential difference across the

two sides of flap m. Applying the 2D spatial potential on the kinematic boundary conditions on

the flaps, gives (see [9])

∫yB
α

yA
α

×
{

∆ϕ
(β)
nα

∆ϕDnα

}

H
(1)
1 (κn|y − η|)

|y − η| κndη +
M
∑

γ=1
γ 6=α

∫yBγ
yAγ

{

∆ϕ
(β)
nγ

∆ϕDnγ

}

−κn
(xα − xγ)2 + (y − η)2

[

κn(xα − xγ)
2
{

H
(1)
2 (κn

√

(xα − xγ)2 + (y − η)2)

−H
(1)
1 (κn

√

(xα − xγ)2 + (y − η)2)

κn
√

(xα − xγ)2 + (y − η)2

}

− (y − η)2
√

(xα − xγ)2 + (y − η)2

×H(1)
1 (κn

√

(xα − xγ)2 + (y − η)2)

]

dη = 4i

{

fnβδαβ

AId
(α)
n eiky sinψ

}

, (A 4)

where
∫
× is a Hadamard finite-part integral. Let yCm = (yAm + yBm)/2 denote the y coordinate of the

center of flap m, mǫ[1,M ]. Making the following change of variables

u=
2(η − yCm)

wm
, vm =

2(y − yCm)

wm
,

{

P
(β)
nα (u)

Qnα(u)

}

=

{

∆ϕ
(β)
nα

∆ϕDnα

}

, (A 5)

yields

∫1
-1

×
{

P
(β)
nα (u)

Qnα(u)

}

H
(1)
1 (

κnwα
2

|vα − u|)
|vα − u| κndu+

M
∑

γ=1
γ 6=α

∫1
−1
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P
(β)
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Qnα(u)
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−κn2wγ
4(xα − xγ)2 + wγ(vγ − u)2
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2
{

H
(1)
2 (

κn
2

√
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−
2H

(1)
1 (
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2

√
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√
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du = 4i

{

fnβδαβ

AId
(α)
n eik(vαwα/2+y

C
α ) sinψ
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.(A 6)

Now

H
(1)
1

(

κn
2
wα|vα − u|

)

=
4

iπ

1

κnwα|vα − u| +Rn

(

κn
2
wα|vα − u|

)

, (A 7)
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where

Rn(z) = J1(z)

[

1 +
2i

π

(

ln
z

2
+ χ

)

]

− i

π

[

z

2
+

+∞
∑

j=2

(−1)j+1(z/2)2j−1

j!(j − 1)!

(

1

j
+

j−1
∑

q=1

2

q

)]

(A 8)

is the remainder, J1 is the Bessel function of first kind and first order, and χ=0.577215 · · · is the

Euler constant [10]. Expanding the unknown jumps in potential across the two sides of the flap as
{

P
(β)
nm(u)

Qnm(u)

}

= (1− u2)1/2
+∞
∑

p=0

{

a
(β)
pnm

AIbpnm

}

Up(u), (A 9)

where apn and bpn are unknown complex coefficients to be determined and Up(u) is the

Chebyshev polynomial of second kind, finally gives

∞
∑

p=0

{{

a
(β)
pnα

bpnα

}

Cnp(vα) +

M
∑

γ=1
γ 6=α

{

a
(β)
pnγ

bpnγ

}

Dnp(vα)

}

=−πwα
{

fnδαβ

d
(α)
n eik(vαwα/2+y

C
α ) sinψ

}

(A 10)

where

Cpnα =−π(p+ 1)Up(vα) +
iπκnwα

4∫1
−1

(1− u2)1/2Up(u)
Rn
(

1
2κn|vα − u|

)

|vα − u| du, (A 11)

Dpnαγ =− iπκnwα
4

∫1
−1

(1− u2)1/2Up(u)2wγ

4(xα − xγ)2 + (vαwα + 2yCα − 2yCγ − wγu)2
[

(xα − xγ)
2
{

κnH
(1)
2

(κn
2

√

4(xα − xγ)2 + (vαwα + 2yCα − 2yCγ − wγu)2
)

−
2H

(1)
1

(κn
2

√

4(xα − xγ)2 + (vαwα + 2yCα − 2yCγ −wγu)2
)

√

4(xα − xγ)2 + (vαwα + 2yCα − 2yCγ − wγu)2

}

− (vαwα + 2yCα − 2yCγ − wγu)
2

2
√

4(xα − xγ)2 + (vαwα + 2yCα − 2yCγ − wγu)2

H
(1)
1

(κn
2

√

4(xα − xγ)2 + (vαwα + 2yCα − 2yCγ −wγu)2
)

]

du (A 12)

vα =
cos(2q + 1)π

2P + 2
, q= 0, 1, 2, · · · , P . (A 13)

In the case of an inline array configuration, xα = xβ and the term Dpn indeed reduces to

Dpnαγ =
iπκnwαwγ

4

∫1
−1

(1− u2)1/2Up(u)

×
H

(1)
1 (

κn
2
|vαwα + 2yCα − 2yCγ − uwγ |)

|vαwα + 2yCα − 2yCγ − uwγ |
du, (A 14)

and correspond to the term (A.12) of [9]. Further generalising it for normal incidence reduces the

system of equations (A 10) exactly to (A.10) of [9].
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