64 research outputs found

    A simple way to evaluate self-designed probes for tumor specific Multiplex Ligation-dependent Probe Amplification (MLPA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Multiplex Ligation-dependent Probe Amplification (MLPA) is widely used for analysis of copy number variations (CNVs) in single or multiple loci. MLPA is a versatile methodology and important tool in cancer research; it provides precise information on increased or decreased copy number at specific loci as opposed to loss of heterozygosity (LOH) studies based upon microsatellite analysis. Pre-designed MLPA kits and software are commercially available to analyze multiple exons, genes, and genomic regions. However, an increasing demand for new gene specific assays makes it necessary to self-design new MLPA probes for which the available software may not be applicable. During evaluation of new self-designed reference probes, we encountered a number of problems, especially when applying the MLPA methodology to tumor samples.</p> <p>Findings</p> <p>DNA samples from 48 unaffected individuals and 145 breast cancer patients were used to evaluate 11 self-designed MLPA probes and determine the cut-off values for CNV, before applying the MLPA probes to normalize the target probes in a cohort of affected individuals. To test the calculation strategy, three probes were designed to cover regions in Regulator of G-protein Signaling 8 (<it>RGS8</it>), which we previously have identified as being affected by allelic imbalance by LOH analysis across <it>RGS8 </it>in the cohort comprising 145 breast tumors. Agreement between the LOH results and the results obtained by each of the three MLPA probes in <it>RGS8 </it>was found for 64%, 73%, and 91%, of the analyzed samples, respectively.</p> <p>Conclusion</p> <p>Here, we present a straightforward method, based upon the normalization pattern in both unaffected and affected individuals, to evaluate self-designed reference probes and to calculate CNV for the MLPA assay with specific focus on the difficulties when analyzing tumor DNA.</p

    Дія свинцю (П) в сублетальній концентрації на вміст білкових і кислоторозчинних тіолів та білку в печінці полівки сірої

    Get PDF
    Induced pluripotent stem cells (iPS) have become crucial in medicine and biology. Several studies indicate their phenotypic similarities with cancer stem cells (CSCs) and a propensity to form tumors. Thus it is desirable to identify a trait which differentiates iPS populations and CSCs. Searching for such a feature, in this work we compare the restriction (R) point-governed regulation of cell cycle progression in different cell types (iPS, cancer, CSC and normal cells) based on the expression profile of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3 (PFKFB3) and phosphofructokinase (PFK1). Our study reveals that PFKFB3 and PFK1 expression allows discrimination between iPS and CSCs. Moreover, cancer and iPS cells, when cultured under hypoxic conditions, alter their expression level of PFKFB3 and PFK1 to resemble those in CSCs. We also observed cell type-related differences in response to inhibition of PFKFB3. This possibility to distinguish CSC from iPS cells or non-stem cancer cells by PFKB3 and PFK1 expression improves the outlook for clinical application of stem cell-based therapies and for more precise detection of CSCs

    Cancer-Associated Fibroblasts Modulate Transcriptional Signatures Involved in Proliferation, Differentiation and Metastasis in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan–Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue

    Cancer-Associated Fibroblasts Modulate Transcriptional Signatures Involved in Proliferation, Differentiation and Metastasis in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan–Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue

    Аудіовізуальні особливості пейзажистики ранніх балад Т. Шевченка

    Get PDF
    (uk) У статті осмислюються аудіовізуальні особливості пейзажотворення в ранній творчості Тараса Шевченка. На матеріалі балад «Причинна», «Тополя», «Утоплена» розглядається сугестивна майстерність поета, здатність до живописання словом, створення ілюзії присутності реципієнта в художньому світі твору.(en) Audiovisual features of the landscape descriptionin the early Shevchenko’s ballads. The paper interprets audiovisual features of the landscape description in the early works of Taras Shevchenko. Suggestive poetic skill, capability of word skill, creating the illusion of recipient’s presence in the worldof the art works are considered on the material of the ballads "The Girl under a Spell", "Poplar", "A Drowned Girl"

    Cell adhesion molecules and their relation to (cancer) cell stemness

    No full text
    Despite decades of search for anticancer drugs targeting solid tumors, this group of diseases remains largely incurable, especially if in advanced, metastatic stage. In this review, we draw comparison between reprogramming and carcinogenesis, as well as between stem cells (SCs) and cancer stem cells (CSCs), focusing on changing garniture of adhesion molecules. Furthermore, we elaborate on the role of adhesion molecules in the regulation of (cancer) SCs division (symmetric or asymmetric), and in evolving interactions between CSCs and extracellular matrix. Among other aspects, we analyze the role and changes of expression of key adhesion molecules as cancer progresses and metastases develop. Here, the role of cadherins, integrins, as well as selected transcription factors like Twist and Snail is highlighted, not only in the regulation of epithelial-to-mesenchymal transition but also in the avoidance of anoikis. Finally, we briefly discuss recent developments and new strategies targeting CSCs, which focus on adhesion molecules or targeting tumor vasculature.Integrative Regenerative Medicine Center (IGEN).Peer Reviewe

    Role of ion channels in regulating Ca2+ homeostasis during the interplay between immune and cancer cells.

    No full text
    Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression
    corecore