166 research outputs found

    Negotiating river restoration: The role of divergent reframing in environmental decision-making

    Get PDF
    In this paper we employ rhetoric culture theory, and a case study of upland channel truncation in the UK, to explore the nuanced processes of negotiation associated with environmental decision-making. In contrast to much of the literature on rhetoric in environmental management, which focuses on the means by which decisions are communicated and justified to an external audience, we focus on the dynamics of interaction and persuasion in and amongst a small group of decision-makers, and how, despite initial misgivings and conflict, they arrived at a decision consensus. We reflect on the importance of the rhetorical situation as a determinant of action and demonstrate how antagonisms were caused by competing moral notions of environmental restoration. We show that consensus was finally achieved through a process of divergent reframing, as individuals reframed the problem according to their own prior values. The outcome, therefore, was a consensus of action but a divergence of opinion, which sheds new light on the role of reframing in environmental management. Finally, we argue for a better understanding of how nuanced interactional processes influence not only small-scale interventions, but all environmental decision processes

    Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management

    Get PDF
    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between −35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km2 upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km2 yr−1) and Glaisdale Beck (SST: 841 t km2 yr−1) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control

    Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides

    Full text link
    We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that it is stabilized over a wide range of tt and ÎŽ\delta. The signature of the state will be peaks in the neutron diffraction spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical conductivity is calculated based on the parameters in the model.Comment: submitted to Phys. Rev. B on January 8, 200

    Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments

    Get PDF
    We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting ordering temperature T-c=40 K. The incommensurability value is consistent with a hole doping of n(h)approximate to 1>8 but in contrast to nonsuperoxygenated La2-xSrxCuO4 with hole doping close to n(h)approximate to 18 the magnetic-order parameter is not field dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the spin and charge ordered "stripe" compounds La1.48Nd0.40Sr0.12CuO4 and La7/8Ba1/8CuO4

    Spatially homogeneous ground state of the two-dimensional Hubbard model

    Full text link
    We investigate the stability with respect to phase separation or charge density-wave formation of the two-dimensional Hubbard model for various values of the local Coulomb repulsion and electron densities using Green-function Monte Carlo techniques. The well known sign problem is particularly serious in the relevant region of small hole doping. We show that the difference in accuracy for different doping makes it very difficult to probe the phase separation instability using only energy calculations, even in the weak-coupling limit (U=4tU=4t) where reliable results are available. By contrast, the knowledge of the charge correlation functions allows us to provide clear evidence of a spatially homogeneous ground state up to U=10tU=10t.Comment: 7 pages and 5 figures. Phys. Rev. B, to appear 200

    Interplay of superconductivity and magnetism in strong coupling

    Get PDF
    A model is introduced describing the interplay between superconductivity and spin-ordering. It is characterized by on-site repulsive electron-electron interactions, causing antiferromagnetism, and nearest-neighbor attractive interactions, giving rise to d-wave superconductivity. Due to a special choice for the lattice, this model has a strong-coupling limit where the superconductivity can be described by a bosonic theory, similar to the strongly coupled negative U Hubbard model. This limit is analyzed in the present paper. A rich mean-field phase diagram is found and the leading quantum corrections to the mean-field results are calculated. The first-order line between the antiferromagnetic- and the superconducting phase is found to terminate at a tricritical point, where two second-order lines originate. At these lines, the system undergoes a transition to- and from a phase exhibiting both antiferromagnetic order and superconductivity. At finite temperatures above the spin-disordering line, quantum-critical behavior is found. For specific values of the model parameters, it is possible to obtain SO(5) symmetry involving the spin- and the phase-sector at the tricritical point. Although this symmetry is explicitly broken by the projection to the lower Hubbard band, it survives on the mean-field level, and modes related to a spontaneously broken SO(5) symmetry are present on the level of the random phase approximation in the superconducting phase.Comment: 16 pages Revtex, 5 figure

    Measurement of ΜˉΌ\bar{\nu}_{\mu} and ΜΌ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(ΜΌ+nucleus→Ό−+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(ΜˉΌ+nucleus→Ό++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(Μˉ)σ(Îœ))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K Μˉ/Îœ\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of ΞΌ\theta_{\mu}500 MeV/c. The results are σ(Μˉ)=(0.900±0.029(stat.)±0.088(syst.))×10−39\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    The timing of HIV-1 infection of cells that persist on therapy is not strongly influenced by replication competency or cellular tropism of the provirus

    Get PDF
    People with HIV-1 (PWH) on antiretroviral therapy (ART) can maintain undetectable virus levels, but a small pool of infected cells persists. This pool is largely comprised of defective proviruses that may produce HIV-1 proteins but are incapable of making infectious virus, with only a fraction (~10%) of these cells harboring intact viral genomes, some of which produce infectious virus following ex vivo stimulation (i.e. inducible intact proviruses). A majority of the inducible proviruses that persist on ART are formed near the time of therapy initiation. Here we compared proviral DNA (assessed here as 3’ half genomes amplified from total cellular DNA) and inducible replication competent viruses in the pool of infected cells that persists during ART to determine if the original infection of these cells occurred at comparable times prior to therapy initiation. Overall, the average percent of proviruses that formed late (i.e. around the time of ART initiation, 60%) did not differ from the average percent of replication competent inducible viruses that formed late (69%), and this was also true for proviral DNA that was hypermutated (57%). Further, there was no evidence that entry into the long-lived infected cell pool was impeded by the ability to use the CXCR4 coreceptor, nor was the formation of long-lived infected cells enhanced during primary infection, when viral loads are exceptionally high. We observed that infection of cells that transitioned to be long-lived was enhanced among people with a lower nadir CD4+ T cell count. Together these data suggest that the timing of infection of cells that become long-lived is impacted more by biological processes associated with immunodeficiency before ART than the replication competency and/ or cellular tropism of the infecting virus or the intactness of the provirus. Further research is needed to determine the mechanistic link between immunodeficiency and the timing of infected cells transitioning to the long-lived pool, particularly whether this is due to differences in infected cell clearance, turnover rates and/or homeostatic proliferation before and after ART
    • 

    corecore