11 research outputs found

    IL-25 dampens the growth of human germinal center-derived B-cell non Hodgkin Lymphoma by curtailing neoangiogenesis

    Get PDF
    Interleukin (IL)-25, a member of the IL-17 cytokine superfamily, is produced by immune and non-immune cells and exerts type 2 pro-inflammatory effects in vitro and in vivo. The IL-25 receptor(R) is composed of the IL-17RA/IL-17RB subunits. Previous work showed that germinal centre (GC)-derived B-cell non Hodgkin lymphomas (B-NHL) expressed IL-17AR, formed by IL-17RA and IL-17RC subunits, and IL-17A/IL-17AR axis promoted B-NHL growth by stimulating neoangiogenesis. Here, we have investigated expression and function of IL-25/IL-25R axis in lymph nodes from human GC-derived B-NHL, i.e. Follicular Lymphoma (FL,10 cases), Diffuse Large B Cell Lymphoma (6 cases) and Burkitt Lymphoma (3 cases). Tumor cells expressed IL-25R and IL-25 that was detected also in non-malignant cells by flow cytometry. Immunohistochemical studies confirmed expression of IL-25R and IL-25 in FL cells, and highlighted IL-25 expression in bystander elements of the FL microenvironment. IL-25 i) up-regulated phosphorylation of NFkBp65, STAT-1 and JNK in B-NHL cells; ii) inhibited in vitro proliferation of the latter cells; iii) exerted anti-tumor activity in two in vivo B-NHL models by dampening expression of pro-angiogenic molecules as VEGF-C, CXCL6 and ANGPT3. In conclusion, IL-25, that is intrinsically pro-angiogenic, inhibits B-NHL growth by reprogramming the angiogenic phenotype of B-NHL cells

    Interleukin-17A promotes the growth of human germinal center derived non-Hodgkin B cell lymphoma

    Get PDF
    Interleukin (IL)-17A belongs to IL-17 superfamily and binds the heterodimeric IL-17 receptor (R)(IL-17RA/IL-17RC). IL-17A promotes germinal center (GC) formation in mouse models of autoimmune or infectious diseases, but the role of IL-17A/IL-17AR complex in human neoplastic GC is unknown. In this study, we investigated expression and function of IL-17A/IL-17AR in the microenvironments of 44 B cell non-Hodgkin lymphomas (B-NHL) of GC origin (15 follicular lymphomas, 17 diffuse large B cells lymphomas and 12 Burkitt lymphomas) and 12 human tonsil GC. Furthermore, we investigated the role of IL-17A in two in vivo models of GC B cell lymphoma, generated by s.c. injection of SU-DHL-4 and OCI-Ly8 cell lines in Severe combined immunodeficiency (SCID)/Non Obese Diabetic (NOD) mice. We found that: (i) BNHL cell fractions and tonsil GC B cells expressed IL-17RA/IL-17RC, (ii) IL-17A signaled in both cell types through NFkBp65, but not p38, ERK-1/2, Akt or NF-kBp50/105, phosphorylation, (iii) IL-17A was expressed in T cells and mast cells from neoplastic and normal GC microenvironments, (iv) IL-17A rendered tonsil GC B cells competent to migrate to CXCL12 and CXCL13 by downregulating RGS16 expression; (v) IL-17A stimulated in vitro proliferation of primary B-NHL cells; (vi) IL-17A (1 mg/mouse-per dose) stimulated B-NHL growth in two in vivo models by enhancing tumor cell proliferation and neo-angiogenesis. This latter effect depended on IL-17A-mediated induction of pro-angiogenic gene expression in tumor cells and direct stimulation of endothelial cells. These data define a previously unrecognized role of human IL-17A in promoting growth of GC-derived B-NHL and modulating normal GC B cell trafficking

    Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration

    Get PDF
    We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electroolfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy. \ua9 The Author 2014. Published by Oxford University Press. All rights reserved

    Interleukin-27 Acts as Multifunctional Antitumor Agent in Multiple Myeloma

    No full text
    Abstract Purpose: Multiple myeloma (MM) derives from plasmablast/plasma cells that accumulate in the bone marrow. Different microenvironmental factors may promote metastatic dissemination especially to the skeleton, causing bone destruction. The balance between osteoclast and osteoblast activity represents a critical issue in bone remodeling. Thus, we investigated whether interluekin-27 (IL-27) may function as an antitumor agent by acting directly on MM cells and/or on osteoclasts/osteoblasts. Experimental Design: The IL-27 direct antitumor activity on MM cells was investigated in terms of angiogenesis, proliferation, apoptosis, and chemotaxis. The IL-27 activity on osteoclast/osteoblast differentiation and function was also tested. In vivo studies were done using severe combined immunodeficient/nonobese diabetic mice injected with MM cell lines. Tumors from IL-27– and PBS-treated mice were analyzed by immunohistochemistry and PCR array. Results: We showed that IL-27 (a) strongly inhibited tumor growth of primary MM cells and MM cell lines through inhibition of angiogenesis, (b) inhibited osteoclast differentiation and activity and induced osteoblast proliferation, and (c) damped in vivo tumorigenicity of human MM cell lines through inhibition of angiogenesis. Conclusions: These findings show that IL-27 may represent a novel therapeutic agent capable of inhibiting directly MM cell growth as well as osteoclast differentiation and activity. Clin Cancer Res; 16(16); 4188–97. ©2010 AACR

    Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasi

    Targeting alpha7-nicotinic receptor for the treatment of pleural mesothelioma.

    No full text
    Human malignant pleural mesothelioma (MPM) is a dreadful disease and there is still no standard therapy available for a consistent therapeutic approach. This research is aimed at the evaluation of the potential therapeutic effect of a specific nicotinic receptor (nAChR) antagonist, namely alpha-Cobratoxin (alpha-CbT). Its effectiveness was tested in mesothelioma cell lines and in primary mesothelioma cells in vitro, as well as in vivo, in orthotopically xenotransplanted NOD/SCID mice. Cells showed alpha7-nAChR expression and their growth was significantly inhibited by alpha-CbT. Severe induction of apoptosis was observed after exposure to alpha-CbT [IC(80-90)]. Apoptosis was characterised by: change in mitochondrial potential, caspase-3 cleavage, down-regulation of mRNA and protein for survivin, XIAP, IAP1, IAP2 and Bcl-XL, inhibition by caspase-3 inhibitor. In vivo, the alpha-CbT acute LD(50) was 0.15 mg/kg. The LD(100) [0.24 mg/kg] induced fatal respiratory failure and massive kidney necrosis. Phase II experiments with 0.12 ng/kg alpha-CbT (1/1000 of LD(10)) were done in 53 xenotransplanted mice, inhibiting tumour development as confirmed by chest X-ray examinations, autopsy and microscopical findings. The growth of human proliferating T lymphocytes and of mesothelial cells in primary culture was not affected by alpha-CbT. Non-immunogenic derivatives of the alpha-CbT molecule need to be developed for possible human use
    corecore