14 research outputs found

    Can bryophyte groups increase functional resolution in tundra ecosystems?

    Get PDF
    Funding Information: This study was supported by a grant to SL from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, Grant No. 797446 and by the Independent Research Fund Denmark, Grant no. 0135-00140B. Funding from the Academy of Finland (grant 322266), National Science Foundation (1504224, 1836839, PLR-1504381 and PLR-1836898), Independent Research Fund Denmark (9040-00314B), Moscow State University, (project No 121032500089-1), Natural Sciences and Engineering Research Council of Canada, ArcticNet, Polar Continental Shelf Program, Northern Science Training Program, Polar Knowledge Canada, Royal Canadian Mounted Police, Tomsk State University competitiveness improvement program and the Russian Science Foundation (grant No 20-67-46018) are gratefully acknowledged. Matthias Ahrens provided valuable insights on the cushion growth form, and we are most thankful. We thank Gaius Shaver and two anonymous reviewers for providing valuable critique and input to earlier versions of this manuscript. Publisher Copyright: © the author(s) or their institution(s).The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.Peer reviewe

    Can bryophyte groups increase functional resolution in tundra ecosystems?

    Get PDF
    The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites

    Long term natural dynamics of an alpine lichen heath in the Teberda State Biosphere Reserve, Northwestern Caucasus

    No full text
    The alpine vegetation of Europe and the Caucasus has experienced substantial changes due to climate warming and reduced grazing. Exposed ridge communities, such as alpine heaths, are presumed to be less vulnerable to such processes. Herein, we analyze long-term (37 years) dynamics of an alpine lichen heath in the Teberda State Biosphere Reserve, Karachaevo-Cherkessian Republic, Russia. We counted the shoots of all vascular plants present on permanent plots. Autocorrelated linear regressions, a non-metric multidimensional scaling ordination, and fourth-corner analysis were applied to characterize the relationships between shoot numbers, climate variables (temperatures and precipitation), functional traits, and species strategies. Nine species, including dominant Festuca ovina and Antennaria dioica, increased their abundance, and Carex spp. were observed to decrease. The overall dynamics were mainly driven by increasing mean temperatures during the growing season (July and August). None of the changes observed in the selected traits were correlated with increasing or decreasing numbers of species. However, some traits (plant height, specific root length, specific leaf area, and leaf carbon content) were potentially associated with climate variables. The observed dynamics suggested an overall increase in the abundance of herbaceous plants. Generally, our results support “greening” effects in tundra and alpine biomes.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species

    No full text
    Questions: What are the water economy strategies of the dominant subarctic bryophytes in terms of colony and shoot traits? Can colony water retention capacity be predicted from morphological traits of both colonies and separate shoots? Are suites of water retention traits consistently related to bryophyte habitat and phylogenetic position? Location: Abisko Research Station, North Sweden. Methods: We screened 22 abundant subarctic bryophyte species from diverse habitats for water economy traits of shoots and colonies, including desiccation rates, water content at field capacity, volume and density (mg cm-3) of water-saturated and oven-dried patches, evaporation rate (g.m-2.s-1) and cell wall thickness. The relationships between these traits and shoot and colony desiccation rates were analysed with Spearman rank correlations. Subsequent multivariate (cluster followed by PCA) analyses were based on turf density, turf and shoot desiccation rate, cell wall thickness and amount of external and internal water. Results: Individual shoot properties, i.e. leaf cell wall properties, water retention capacity and desiccation rate, did not correspond with colony water retention capacity. Colony desiccation rate depended on density of water-saturated colonies, and was marginally significantly negatively correlated with species individual shoot desiccation rate but not related to any other shoot or colony trait. Multivariate analyses based on traits assumed to determine colony desiccation rate revealed six distinct species groups reflecting habitat choice and phylogenetic relationships. Conclusions: General relationships between shoot and colony traits as determinants of water economy will help to predict and upscale changes in hydrological function of bryophyte-dominated peatlands undergoing climate-induced shifts in species abundance, and feedbacks of such species shifts on permafrost insulation and carbon sequestration functions

    Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus: The results of a tea bag burial experiment

    No full text
    Mountainous areas exhibit highly variable decomposition rates as a result of strong local differences in climate and vegetation type. This paper describes the effect of these factors on two major determinants of the local carbon cycle: litter decomposition and carbon stabilization. In order to adequately reflect local heterogeneity, we have sampled 12 typical plant communities of the Russian Caucasus. In order to minimize confounding effects and encourage comparative studies, we have adapted the widely used tea bag index (TBI) that is typically used in areas with low decomposition. By incubating standardized tea litter for a year, we investigated whether (1) initial litter decomposition rate (k) is negatively correlated with litter stabilization (S) and (2) whether k or S exhibit correlations with altitude and other environmental conditions. Our results show that S and k are not correlated. Altitude, pH, and water content significantly influenced the stabilization factor S, while soil-freezing had no influence. In contrast, none of these factors predicted the decomposition rate k. Based on our data, we argue that collection of decomposition rates alone, as is now common practice, is not sufficient to understand carbon input to soils and can potentially lead to misleading results. Our data on community-specific decomposition and stabilization rates further constrain estimates of litter accumulation in subalpine communities and the potential effects of climate change

    Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus : The results of a tea bag burial experiment

    No full text
    Mountainous areas exhibit highly variable decomposition rates as a result of strong local differences in climate and vegetation type. This paper describes the effect of these factors on two major determinants of the local carbon cycle: litter decomposition and carbon stabilization. In order to adequately reflect local heterogeneity, we have sampled 12 typical plant communities of the Russian Caucasus. In order to minimize confounding effects and encourage comparative studies, we have adapted the widely used tea bag index (TBI) that is typically used in areas with low decomposition. By incubating standardized tea litter for a year, we investigated whether (1) initial litter decomposition rate (k) is negatively correlated with litter stabilization (S) and (2) whether k or S exhibit correlations with altitude and other environmental conditions. Our results show that S and k are not correlated. Altitude, pH, and water content significantly influenced the stabilization factor S, while soil-freezing had no influence. In contrast, none of these factors predicted the decomposition rate k. Based on our data, we argue that collection of decomposition rates alone, as is now common practice, is not sufficient to understand carbon input to soils and can potentially lead to misleading results. Our data on community-specific decomposition and stabilization rates further constrain estimates of litter accumulation in subalpine communities and the potential effects of climate change

    Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions?

    No full text
    Questions: Mycorrhizae may be a key element of plant nutritional strategies and of carbon and nutrient cycling. Recent research suggests that in natural conditions, intensity of mycorrhizal colonization should be considered an important plant feature. How are inter-specific variations in mycorrhizal colonization rate, plant relative growth rate (RGR) and leaf litter decomposability related? Is (arbuscular) mycorrhizal colonization linked to the dominance of plant species in nutrient-stressed ecosystems? Location: Teberda State Biosphere Reserve, northwest Caucasus, Russia. Methods: We measured plant RGR under mycorrhizal limitation and under natural nutrition conditions, together with leaf litter decomposability and field intensity of mycorrhizal colonization across a wide range of plant species, typical for alpine communities of European mountains. We applied regression analysis to test whether the intensity of mycorrhizal colonization is a good predictor of RGR and decomposition rate, and tested how these traits predict plant dominance in communities. Results: Forb species with a high level of field mycorrhizal colonization had lower RGR under nutritional and mycorrhizal limitation, while grasses were unaffected. Litter decomposition rate was not related to the intensity of mycorrhizal colonization. Dominant species mostly had a higher level of mycorrhizal colonization and lower RGR without mycorrhizal colonization than subordinate species, implying that they were more dependent on mycorrhizal symbionts. There were no differences in litter decomposability. Conclusions: In alpine herbaceous plant communities dominated by arbuscular mycorrhizae, nutrient dynamics are to a large extent controlled by mycorrhizal symbiosis. Intensity of mycorrhizal colonization is a negative predictor for whole plant RGR. Our study highlights the importance of mycorrhizal colonization as a key trait underpinning the role of plant species in carbon and nutrient dynamics in nutrient-limited herbaceous plant communities

    Do patterns of intra-specific variability and community weighted-means of leaf traits correspond? An example from alpine plants

    No full text
    Intraspecific variability of the traits is usually less than interspecific, but directions of inter-and intraspecific variation along environmental gradients are not well studied. For 17 alpine species we test a hypothesis that the direction of intraspecific variation in leaf traits among different communities along an environmental gradient coincides consistently with community weighted mean (CWM) trait variation at the community level along the same gradient. We obtained two groups of leaf traits according to their response to CWM and topographic (snow depth and snow melt) gradients. For leaf mass and area intraspecific variation corresponded to CWM variation among communities. SLA, water content and leaf thickness patterns within species changed directly among communities according to the toposequence (snowmelt gradient). These results are well expressed for forbs, but mostly they were not significant for graminoids. For leaf area we obtained opposite response of forbs and graminoids to snowmelt gradient. Forbs increased, but graminoids decreased leaf area when snow depth increased. Intraspecific trait variation across natural gradients does not necessarily follow that for interspecific or community-level variation

    Can bryophyte groups increase functional resolution in tundra ecosystems?

    Get PDF
    Funding Information: This study was supported by a grant to SL from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, Grant No. 797446 and by the Independent Research Fund Denmark, Grant no. 0135-00140B. Funding from the Academy of Finland (grant 322266), National Science Foundation (1504224, 1836839, PLR-1504381 and PLR-1836898), Independent Research Fund Denmark (9040-00314B), Moscow State University, (project No 121032500089-1), Natural Sciences and Engineering Research Council of Canada, ArcticNet, Polar Continental Shelf Program, Northern Science Training Program, Polar Knowledge Canada, Royal Canadian Mounted Police, Tomsk State University competitiveness improvement program and the Russian Science Foundation (grant No 20-67-46018) are gratefully acknowledged. Matthias Ahrens provided valuable insights on the cushion growth form, and we are most thankful. We thank Gaius Shaver and two anonymous reviewers for providing valuable critique and input to earlier versions of this manuscript. Publisher Copyright: © the author(s) or their institution(s).The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.Peer reviewe
    corecore