131 research outputs found
Gut metagenome profile of the Nunavik Inuit youth is distinct from industrial and non-industrial counterparts
Comparative metagenomics studies have highlighted differences in microbiome community structure among human populations over diverse lifestyles and environments. With their unique environmental and historical backgrounds, Nunavik Inuit have a distinctive gut microbiome with undocumented health-related implications. Using shotgun metagenomics, we explored the taxonomic and functional structure of the gut microbiome from 275 Nunavik Inuit ranging from 16 to 30-year-old. Whole-metagenome analyses revealed that Nunavik Inuit youths have a more diverse microbiome than their non-industrialized and industrialized counterparts. A comparison of k-mer content illustrated the uniqueness of the Nunavik gut microbiome. Short-chain fatty acids producing species, and carbohydrates degradation pathways dominated Inuit metagenomes. We identified a taxonomic and functional signature unique to the Nunavik gut microbiome contrasting with other populations using a random forest classifier. Here, we show that the Nunavik Inuit gut microbiome exhibits high diversity and a distinct community structure
Epstein-Barr Virus and immune status imprint the immunogenomics of non-Hodgkin lymphomas occurring in immune-suppressed environments
Non-Hodgkin lymphomas (NHL) commonly occur in immune-deficient (ID) patients, both HIV-infected and transplanted, and are often EBV-driven with cerebral localization, raising the question of tumor immunogenicity, a critical issue for treatment responses. We investigated the immunogenomics of 68 lymphoproliferative disorders from 51 ID (34 posttransplant, 17 HIV+) and 17 immunocompetent patients. Overall, 72% were Large B Cells Lymphoma (LBCL) and 25% were primary central-nervous-system lymphoma (PCNSL) while 40% were EBV-positive. Tumor whole-exome and RNA sequencing, along with a bioinformatics pipeline allowed analysis of tumor mutational burden (TMB), tumor landscape and microenvironment (TME) and prediction of tumor neoepitopes. Both TMB (2.2 vs 3.4/Mb, p=0.001) and neoepitopes numbers (40 vs 200, p=0.00019) were lower in EBVpositive than in EBV-negative NHL, regardless of the immune status. In contrast both EBV and the immune status influenced the tumor mutational profile, with HNRNPF and STAT3 mutations exclusively observed in EBV-positive and ID NHL, respectively. Peripheral blood T-cell responses against tumor neoepitopes were detected in all EBV-negative cases but in only half EBV-positive ones, including responses against IgH-derived MHC-class-II restricted neoepitopes. The TME analysis showed higher CD8 T cell infiltrates in EBVpositive vs EBV-negative NHL, together with a more tolerogenic profile composed of Tregs, type-M2 macrophages and an increased expression of negative immune-regulators. Our results highlight that the immunogenomics of NHL in patients with immunodeficiency primarily relies on the tumor EBV status, while T cell recognition of tumor- and IgH-specific neoepitopes is conserved in EBV-negative patients, offering potential opportunities for future T cell-based immune therapies
Potential human transmission of amyloid β pathology: surveillance and risks
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically
Conception et étude d'un modèle de gestion durable des variétés de plantes résistantes aux virus dans un paysage
National audienceno abstrac
Effect of genetic drift and selection on plant resistance durability to viruses
Une plante peut être totalement protégée d'un agent pathogène grâce à un gène majeur de résistance, mais ce dernier peut être rapidement contourné suite à l'apparition et à la propagation de variants pathogènes adaptés. Cette thèse s'intéresse aux mécanismes évolutifs permettant le ralentissement de ce contournement chez les virus de plantes en agissant sur deux forces évolutives majeures, la dérive génétique et la sélection, depuis le niveau de l'hôte jusqu'à celui de la parcelle. D'abord, un modèle épidémiologique stochastique de type SI au niveau d'une parcelle agricole a montré que la dérive génétique pouvait être particulièrement bénéfique au rendement agricole lorsque l'adaptation du virus au gène majeur induit un coût de fitness intermédiaire dans les plantes sensibles. Ensuite, la conception et la validation d'un modèle basé sur des équations déterministes de Lotka-Volterra et des processus stochastiques Dirichlet-multinomiaux a permis de distinguer les effets de la dérive génétique et ceux de la sélection sur des données temporelles de compétition intra-plante entre variants viraux, et de mettre en évidence le contrôle génétique de ces effets par les plantes. Enfin, une analyse de la corrélation entre ces estimations des intensités de dérive génétique et de sélection et une estimation expérimentale de la durabilité d'un gène majeur a montré qu'une forte dérive génétique lors des stades précoces de l'infection augmentait la durabilité du gène majeur. Ces résultats ouvrent des perspectives pour une gestion plus durable de la résistance des plantes, par la sélection de variétés de plantes induisant une forte dérive génétique sur les populations d'agents pathogènesPlants can be fully protected from their pathogens when they carry major resistance genes, but the efficiency of these genes is limited by the emergence and spread of adapted, resistance-breaking pathogen variants. This thesis studies how evolutionary forces imposed by the plants on pathogen populations may increase the durability of major resistance genes. Using plant viruses as a biological model, this thesis investigates the effect of genetic drift and selection, from the within-host to the host population level. Firstly, a stochastic epidemiological SI model at the field level showed that genetic drift could be particularly beneficial for crop yield when the fitness cost associated with virus adaptation to resistance was intermediate in susceptible plants. Then, the design and validation of a mechanistic-statistical model based on deterministic Lotka-Volterra equations and stochastic Dirichlet-multinomial processes allowed to disentangle the effects of genetic drift from those of selection on temporal data of within-host competition between virus variants. The intensities of genetic drift and selection acting on virus populations were shown to be controlled genetically by the hosts. Finally, a correlation analysis between these estimations of genetic drift and selection intensities and an experimental estimation of the durability of a major resistance gene showed that strong genetic drift during the early stages of plant infection led to an increase in resistance durability. These results open new perspectives for more durable management of plant resistance, by breeding plant varieties inducing strong genetic drift on pathogen population
Effet de la dérive génétique et de la sélection sur la durabilité de la résistance des plantes aux virus
Plants can be fully protected from their pathogens when they carry major resistance genes, but the efficiency of these genes is limited by the emergence and spread of adapted, resistance-breaking pathogen variants. This thesis studies how evolutionary forces imposed by the plants on pathogen populations may increase the durability of major resistance genes. Using plant viruses as a biological model, this thesis investigates the effect of genetic drift and selection, from the within-host to the host population level. Firstly, a stochastic epidemiological SI model at the field level showed that genetic drift could be particularly beneficial for crop yield when the fitness cost associated with virus adaptation to resistance was intermediate in susceptible plants. Then, the design and validation of a mechanistic-statistical model based on deterministic Lotka-Volterra equations and stochastic Dirichlet-multinomial processes allowed to disentangle the effects of genetic drift from those of selection on temporal data of within-host competition between virus variants. The intensities of genetic drift and selection acting on virus populations were shown to be controlled genetically by the hosts. Finally, a correlation analysis between these estimations of genetic drift and selection intensities and an experimental estimation of the durability of a major resistance gene showed that strong genetic drift during the early stages of plant infection led to an increase in resistance durability. These results open new perspectives for more durable management of plant resistance, by breeding plant varieties inducing strong genetic drift on pathogen populationsUne plante peut être totalement protégée d'un agent pathogène grâce à un gène majeur de résistance, mais ce dernier peut être rapidement contourné suite à l'apparition et à la propagation de variants pathogènes adaptés. Cette thèse s'intéresse aux mécanismes évolutifs permettant le ralentissement de ce contournement chez les virus de plantes en agissant sur deux forces évolutives majeures, la dérive génétique et la sélection, depuis le niveau de l'hôte jusqu'à celui de la parcelle. D'abord, un modèle épidémiologique stochastique de type SI au niveau d'une parcelle agricole a montré que la dérive génétique pouvait être particulièrement bénéfique au rendement agricole lorsque l'adaptation du virus au gène majeur induit un coût de fitness intermédiaire dans les plantes sensibles. Ensuite, la conception et la validation d'un modèle basé sur des équations déterministes de Lotka-Volterra et des processus stochastiques Dirichlet-multinomiaux a permis de distinguer les effets de la dérive génétique et ceux de la sélection sur des données temporelles de compétition intra-plante entre variants viraux, et de mettre en évidence le contrôle génétique de ces effets par les plantes. Enfin, une analyse de la corrélation entre ces estimations des intensités de dérive génétique et de sélection et une estimation expérimentale de la durabilité d'un gène majeur a montré qu'une forte dérive génétique lors des stades précoces de l'infection augmentait la durabilité du gène majeur. Ces résultats ouvrent des perspectives pour une gestion plus durable de la résistance des plantes, par la sélection de variétés de plantes induisant une forte dérive génétique sur les populations d'agents pathogène
Effet de la dérive génétique et de la sélection sur la durabilité de la résistance des plantes aux virus
Plants can be fully protected from their pathogens when they carry major resistance genes, but the efficiency of these genes is limited by the emergence and spread of adapted, resistance-breaking pathogen variants. This thesis studies how evolutionary forces imposed by the plants on pathogen populations may increase the durability of major resistance genes. Using plant viruses as a biological model, this thesis investigates the effect of genetic drift and selection, from the within-host to the host population level. Firstly, a stochastic epidemiological SI model at the field level showed that genetic drift could be particularly beneficial for crop yield when the fitness cost associated with virus adaptation to resistance was intermediate in susceptible plants. Then, the design and validation of a mechanistic-statistical model based on deterministic Lotka-Volterra equations and stochastic Dirichlet-multinomial processes allowed to disentangle the effects of genetic drift from those of selection on temporal data of within-host competition between virus variants. The intensities of genetic drift and selection acting on virus populations were shown to be controlled genetically by the hosts. Finally, a correlation analysis between these estimations of genetic drift and selection intensities and an experimental estimation of the durability of a major resistance gene showed that strong genetic drift during the early stages of plant infection led to an increase in resistance durability. These results open new perspectives for more durable management of plant resistance, by breeding plant varieties inducing strong genetic drift on pathogen populationsUne plante peut être totalement protégée d'un agent pathogène grâce à un gène majeur de résistance, mais ce dernier peut être rapidement contourné suite à l'apparition et à la propagation de variants pathogènes adaptés. Cette thèse s'intéresse aux mécanismes évolutifs permettant le ralentissement de ce contournement chez les virus de plantes en agissant sur deux forces évolutives majeures, la dérive génétique et la sélection, depuis le niveau de l'hôte jusqu'à celui de la parcelle. D'abord, un modèle épidémiologique stochastique de type SI au niveau d'une parcelle agricole a montré que la dérive génétique pouvait être particulièrement bénéfique au rendement agricole lorsque l'adaptation du virus au gène majeur induit un coût de fitness intermédiaire dans les plantes sensibles. Ensuite, la conception et la validation d'un modèle basé sur des équations déterministes de Lotka-Volterra et des processus stochastiques Dirichlet-multinomiaux a permis de distinguer les effets de la dérive génétique et ceux de la sélection sur des données temporelles de compétition intra-plante entre variants viraux, et de mettre en évidence le contrôle génétique de ces effets par les plantes. Enfin, une analyse de la corrélation entre ces estimations des intensités de dérive génétique et de sélection et une estimation expérimentale de la durabilité d'un gène majeur a montré qu'une forte dérive génétique lors des stades précoces de l'infection augmentait la durabilité du gène majeur. Ces résultats ouvrent des perspectives pour une gestion plus durable de la résistance des plantes, par la sélection de variétés de plantes induisant une forte dérive génétique sur les populations d'agents pathogène
Comparison of Modified Double Tray Method and 3D scanning i prosthodontics
The purpose of this in vitro study was to investigate and to compare the precision of two different impression techniques for oral prosthetic construction, namely the analogue modified double tray method, and the digital three-dimensional scanning with Trios 3D shape intraoral scanner. The analog method used was a modified double tray method where the tray had been removed to diminish vertical discrepancies in occlusion. All testing was based on a master model with a prepared acrylic tooth from which a total of 20 milled crowns in polymethylmethacrylate was produced, 10 from each impression method. The fit of the crowns was evaluated according to a clinical protocol and the cement gap was measured with a measuring microscope. Each crown was fitted on to the master model with Flexitime light body, mimicking a cementing procedure. The resulting “cement layer” was after setting of the silicone impression material removed and divided into 4 equal pieces which subsequently were measured in a measuring microscope. Statistical analysis of the resulting measurements showed no significant differences in precision when comparing the impression methods. Because of a manufacturing error in the milling procedure, all of the milled plastic crowns showed suboptimal fit on the master model. However, it was concluded that no statistical - nor clinical difference between the two methods could be established. Most likely, both methods can be used for fabrication of single unit prosthetic reconstructions with adequate precision for effective treatment.
Sustainable plant resistance management in agricultural landscapes
International audienceno abstrac
- …