2,372 research outputs found
Probing EWSB Naturalness in Unified SUSY Models with Dark Matter
We have studied Electroweak Symmetry Breaking (EWSB) fine-tuning in the
context of two unified Supersymmetry scenarios: the Constrained Minimal
Supersymmetric Model (CMSSM) and models with Non-Universal Higgs Masses (NUHM),
in light of current and upcoming direct detection dark matter experiments. We
consider both those models that satisfy a one-sided bound on the relic density
of neutralinos, , and also the subset that satisfy
the two-sided bound in which the relic density is within the 2 sigma best fit
of WMAP7 + BAO + H0 data. We find that current direct detection searches for
dark matter probe the least fine-tuned regions of parameter-space, or
equivalently those of lowest Higgs mass parameter , and will tend to probe
progressively more and more fine-tuned models, though the trend is more
pronounced in the CMSSM than in the NUHM. Additionally, we examine several
subsets of model points, categorized by common mass hierarchies; M_{\chi_0}
\sim M_{\chi^\pm}, M_{\chi_0} \sim M_{\stau}, M_{\chi_0} \sim M_{\stop_1}, the
light and heavy Higgs poles, and any additional models classified as "other";
the relevance of these mass hierarchies is their connection to the preferred
neutralino annihilation channel that determines the relic abundance. For each
of these subsets of models we investigated the degree of fine-tuning and
discoverability in current and next generation direct detection experiments.Comment: 26 pages, 10 figures. v2: references added. v3: matches published
versio
Behavioral testing and preliminary analysis of the hamster visual system
The dependence of visual orienting ability in hamsters on the axonal projections from retina to midbrain tectum provides experimenters with a good model for assessing the functional regeneration of this central nervous system axonal pathway. For reliable testing of this behavior, male animals at least 10-12 weeks old are prepared by regular pretesting, with all procedures carried out during the less active portion of the daily activity cycle. Using a sunflower seed attached to a small black ball held at the end of a stiff wire, and avoiding whisker contact, turning movements toward visual stimuli are video recorded from above. Because at the eye level, the nasal-most 30° of the visual field can be seen by both the eyes, this part of the field is avoided in assessments of a single side. Daily sessions consist of ten presentations per side. Measures are frequency of responding and detailed turning trajectories. Complete assessment of the functional return of behavior in this testing paradigm takes 3-6 months to complete.postprin
Background Rejection in the DMTPC Dark Matter Search Using Charge Signals
The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing
low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical
readout with CCD cameras allows for the detection for the daily modulation in
the direction of the dark matter wind, while several charge readout channels
allow for the measurement of additional recoil properties. In this article, we
show that the addition of the charge readout analysis to the CCD allows us too
obtain a statistics-limited 90% C.L. upper limit on the rejection factor
of for recoils with energies between 40 and 200
keV. In addition, requiring coincidence between charge signals
and light in the CCD reduces CCD-specific backgrounds by more than two orders
of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc
Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar
The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for
exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However,
the recent evidence from Atlas and CMS on a light Higgs scalar with mass
m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in
turn constrains the neutralino annihilation mechanisms in the early universe.
We find that stau and stop co-annihilation mechanisms -- already highly
stressed by the latest Atlas/CMS results on SUSY searches -- are nearly
eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV.
Furthermore, neutralino annihilation via the A-resonance is essentially ruled
out in mSUGRA so that it is exceedingly difficult to generate
thermally-produced neutralino-only dark matter at the measured abundance. The
remaining possibility lies in the focus-point region which now moves out to
m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking
term A_0. The remaining HB/FP region is more fine-tuned than before owing to
the typically large top squark masses. We present updated direct and indirect
detection rates for neutralino dark matter, and show that ton scale noble
liquid detectors will either discover mixed higgsino CDM or essentially rule
out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure
Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions
Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons
to enable measurements of its suppressed decays. Results of a detailed study of
the determination of the muon Yukawa coupling at 3 TeV, based on full detector
simulation and event reconstruction, are presented. The muon Yukawa coupling
can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons
masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab.
The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy
First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector
The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr
CF4) 10 liter detector capable of measuring the vector direction of nuclear
recoils with the goal of directional dark matter detection. In this paper we
present the first dark matter limit from DMTPC. In an analysis window of 80-200
keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper
limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2}
for 115 GeV/c^2 dark matter particle mass.Comment: accepted for publication in Physics Letters
Constraints on Low-Mass WIMP Interactions on 19F from PICASSO
Recent results from the PICASSO dark matter search experiment at SNOLAB are
reported. These results were obtained using a subset of 10 detectors with a
total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low
backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be
obtained which results in an increased sensitivity to interactions from Weakly
Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark
matter signal was found. Best exclusion limits in the spin dependent sector
were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of
sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the
low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections
larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.Comment: 23 pages, 7 figures, to be published in Phys. Lett.
Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO
The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP
interactions on F using the superheated droplet technique. A new
generation of detectors and new features which enable background discrimination
via the rejection of non-particle induced events are described. First results
are presented for a subset of two detectors with target masses of F of
65 g and 69 g respectively and a total exposure of 13.75 0.48 kgd. No
dark matter signal was found and for WIMP masses around 24 GeV/c new limits
have been obtained on the spin-dependent cross section on F of
= 13.9 pb (90% C.L.) which can be converted into cross section
limits on protons and neutrons of = 0.16 pb and = 2.60 pb
respectively (90% C.L). The obtained limits on protons restrict recent
interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent
interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages,
7 figure
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
Tests of the Equivalence Principle with Neutral Kaons
We test the Principle of Equivalence for particles and antiparticles, using
CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time,
we search for possible annual, monthly and diurnal modulations of the
observables |eta_{+-}| and phi_{+-}, that could be correlated with variations
in astrophysical potentials. Within the accuracy of CPLEAR, the measured values
of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the
gravitational potential. We analyze data assuming effective scalar, vector and
tensor interactions, and we conclude that the Principle of Equivalence between
particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9},
respectively, for scalar, vector and tensor potentials originating from the Sun
with a range much greater than the distance Earth-Sun. We also study
energy-dependent effects that might arise from vector or tensor interactions.
Finally, we compile upper limits on the gravitational coupling difference
between K0 and K0bar as a function of the scalar, vector and tensor interaction
range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl)
incorporate
- …