904 research outputs found

    Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations

    Get PDF
    AbstractIn-frame mutations in nuclear lamin A/C lead to a multitude of tissue-specific degenerative diseases known as the ‘laminopathies’. Previous studies have demonstrated that lamin A/C-null mouse fibroblasts have defects in cell polarisation, suggesting a role for lamin A/C in nucleo-cytoskeletal-cell surface cross-talk. However, this has not been examined in patient fibroblasts expressing modified forms of lamin A/C. Here, we analysed skin fibroblasts from 3 patients with Emery–Dreifuss muscular dystrophy and from 1 with dilated cardiomyopathy. The emerin–lamin A/C interaction was impaired in each mutant cell line. Mutant cells exhibited enhanced cell proliferation, collagen-dependent adhesion, larger numbers of filopodia and smaller cell spread size, compared with control cells. Furthermore, cell migration, speed and polarization were elevated. Mutant cells also showed an enhanced ability to contract collagen gels at early time points, compared with control cells. Phosphotyrosine measurements during cell spreading indicated an initial temporal lag in ERK1/2 activation in our mutant cells, followed by hyper-activation of ERK1/2 at 2 h post cell attachment. Deregulated ERK1/2 activation is linked with cardiomyopathy, cell spreading and proliferation defects. We conclude that a functional emerin–lamin A/C complex is required for cell spreading and proliferation, possibly acting through ERK1/2 signalling

    Uncoordinated Transcription and Compromised Muscle Function in the Lmna-Null Mouse Model of Emery-Dreifuss Muscular Dystrophy

    Get PDF
    LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting

    Family composition and age at menarche: findings from the international Health Behaviour in School-Aged Children Study

    Get PDF
    This research was funded by The University of St Andrews and NHS Health Scotland.Background Early menarche has been associated with father absence, stepfather presence and adverse health consequences in later life. This article assesses the association of different family compositions with the age at menarche. Pathways are explored which may explain any association between family characteristics and pubertal timing. Methods Cross-sectional, international data on the age at menarche, family structure and covariates (age, psychosomatic complaints, media consumption, physical activity) were collected from the 2009–2010 Health Behaviour in School-aged Children (HBSC) survey. The sample focuses on 15-year old girls comprising 36,175 individuals across 40 countries in Europe and North America (N = 21,075 for age at menarche). The study examined the association of different family characteristics with age at menarche. Regression and path analyses were applied incorporating multilevel techniques to adjust for the nested nature of data within countries. Results Living with mother (Cohen’s d = .12), father (d = .08), brothers (d = .04) and sisters (d = .06) are independently associated with later age at menarche. Living in a foster home (d = −.16), with ‘someone else’ (d = −.11), stepmother (d = −.10) or stepfather (d = −.06) was associated with earlier menarche. Path models show that up to 89% of these effects can be explained through lifestyle and psychological variables. Conclusions Earlier menarche is reported amongst those with living conditions other than a family consisting of two biological parents. This can partly be explained by girls’ higher Body Mass Index in these families which is a biological determinant of early menarche. Lower physical activity and elevated psychosomatic complaints were also more often found in girls in these family environments.Publisher PDFPeer reviewe

    Food consumption, nutrient intake, and dietary patterns in Ghanaian migrants in Europe and their compatriots in Ghana.

    Get PDF
    Background: West African immigrants in Europe are disproportionally affected by metabolic conditions compared to European host populations. Nutrition transition through urbanisation and migration may contribute to this observations, but remains to be characterised. Objective: We aimed to describe the dietary behaviour and its socio-demographic factors among Ghanaian migrants in Europe and their compatriots living different Ghanaian settings. Methods: The multi-centre, cross-sectional RODAM (Research on Obesity and Diabetes among African Migrants) study was conducted among Ghanaian adults in rural and urban Ghana, and Europe. Dietary patterns were identified by principal component analysis. Results: Contributions of macronutrient to the daily energy intake was different across the three study sites. Three dietary patterns were identified. Adherence to the 'mixed' pattern was associated with female sex, higher education, and European residency. The 'rice, pasta, meat, and fish' pattern was associated with male sex, younger age, higher education, and urban Ghanaian environment. Adherence to the 'roots, tubers, and plantain' pattern was mainly related to rural Ghanaian residency. Conclusion: We observed differences in food preferences across study sites: in rural Ghana, diet concentrated on starchy foods; in urban Ghana, nutrition was dominated by animal-based products; and in Europe, diet appeared to be highly diverse

    Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells

    Get PDF
    Satellite cells are the resident stem cells of adult skeletal muscle. To date though, there is a paucity of native markers that can be used to easily identify quiescent satellite cells, with Pax7 probably being the best that is currently available. Here we have further characterized a number of recently described satellite cell markers, and also describe novel ones. Caveolin-1, integrin α7 and the calcitonin receptor proved reliable markers for quiescent satellite cells, being expressed by all satellite cells identified with Pax7. These three markers remained expressed as satellite cells were activated and underwent proliferation. The nuclear envelope proteins lamin A/C and emerin, mutations in which underlie Emery-Dreifuss muscular dystrophy, were also expressed in both quiescent and proliferating satellite cells. Conversely, Jagged-1, a Notch ligand, was not expressed in quiescent satellite cells but was induced upon activation. These findings further contribute to defining the molecular signature of muscle satellite cells

    Uncoordinated Transcription and Compromised Muscle Function in the Lmna-Null Mouse Model of Emery-Dreifuss Muscular Dystrophy

    Get PDF
    LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Anti-cholinergic drug burden in patients with dementia increases after hospital admission: a multicentre cross-sectional study

    Get PDF
    Background: Anticholinergic medications are drugs that block cholinergic transmission, either as their primary therapeutic action or as a secondary effect. Patients with dementia may be particularly sensitive to the central effects of anticholinergic drugs. Anticholinergics also antagonise the effects of the main dementia treatment, cholinesterase inhibitors. Our study aimed to investigate anticholinergic prescribing for dementia patients in UK acute hospitals before and after admission. Methods: We included 352 patients with dementia from 17 UK hospital sites in 2019. They were all inpatients on surgical, medical or Care of the Elderly wards. Information about each patient’s medications were collected using a standardised form, and the anticholinergic drug burden of each patient was calculated with an evidence-based online calculator. Wilcoxon’s rank test was used to look at the correlation between two subgroups upon admission and discharge. Results: On admission to hospital, 37.8% of patients had an anticholinergic burden score ≥ 1 and 5.68% ≥3. On discharge, 43.2% of patients with an anticholinergic burden score ≥ 1 and 9.1% ≥3. The increase in scores was statistically significant (p = 0.001). Psychotropics were the most common group of anticholinergic medications prescribed at discharge. Of those patients taking cholinesterase inhibitors, 44.9% were also prescribed anticholinergic medications. Conclusions: Our cross-sectional, multicentre study found that people with dementia are commonly prescribed anticholinergic medications, even if concurrently taking cholinesterase inhibitors, and are significantly more likely to be discharged from hospital with a higher anticholinergic burden than on admission

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Recasting the theory of mosquito-borne pathogen transmission dynamics and control

    Get PDF
    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald\u27s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control
    corecore