44 research outputs found

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays:Application to 3C 66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) × 109 M o˙ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over "blind"pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences

    Fourteen Recommendations to Create a More Inclusive Environment for LGBTQ+ Individuals in Academic Biology

    Full text link
    Individuals who identify as lesbian, gay, bisexual, transgender, queer, and otherwise non-straight and/or non-cisgender (LGBTQ+) have often not felt welcome or represented in the biology community. Additionally, biology can present unique challenges for LGBTQ+ students because of the relationship between certain biology topics and their LGBTQ+ identities. Currently, there is no centralized set of guidelines to make biology learning environments more inclusive for LGBTQ+ individuals. Rooted in prior literature and the collective expertise of the authors who identify as members and allies of the LGBTQ+ community, we present a set of actionable recommendations to help biologists, biology educators, and biology education researchers be more inclusive of individuals with LGBTQ+ identities. These recommendations are intended to increase awareness of LGBTQ+ identities and spark conversations about transforming biology learning spaces and the broader academic biology community to become more inclusive of LGBTQ+ individuals

    Good scientific practice in MEEG Research: Progress and Perspectives

    Get PDF
    Good Scientific Practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization.For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be periodically revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research.This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges.Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons

    Comparisons of audio and audiovisual measures of stuttering frequency and severity in preschool-age children

    No full text
    Purpose: To determine whether measures of stuttering frequency and measures of overall stuttering severity in preschoolers differ when made from audio-only recordings compared with audiovisual recordings. Method: Four blinded speech-language pathologists who had extensive experience with preschoolers who stutter measured stuttering frequency and rated overall severity from audio-only and audiovisual recordings of 36 preschool children who were stuttering. Stuttering frequency (percentage of syllables stuttered [%SS]) was based on counts of perceptually unambiguous stutterings, made in real time, and overall severity was measured using a 9-point rating scale. Results: Stuttering frequency was statistically significantly lower by around 20% when made from audio-only recordings. This was found to be directly attributable to differences in the counts of stuttered syllables, rather than to differences in the total numbers of syllables spoken. No significant differences were found between recording modalities for the ratings of overall severity. Correlations between %SS scores in the 2 modalities and severity rating scores in the 2 modalities were high, indicating that observers agreed on data trends across speech samples. Conclusions: Measures of %SS made from audio-only recordings may underestimate stuttering frequency in preschoolers. Although audio-only %SS measures may underestimate stuttering frequency at the start of a clinical trial to a clinically significant extent, posttreatment scores at or below 1.0%SS are likely to underestimate by 0.2%SS or less, which is clinically insignificant

    Good Scientific Practice in MEEG Research: Progress and Perspectives

    No full text
    Good Scientific Practice (GSP) refers to both explicit and implicit rules or guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated whenever new findings come to light. However, GSP also needs to be periodically revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasised intangible GSP: a general awareness of personal, organisational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, GSP with respect to data acquisition, analysis, reporting, and sharing is discussed, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favour collective and cooperative work, for both scientific and for societal reasons
    corecore