50 research outputs found

    Genome Evolution and Niche Differentiation of Bacterial Endosymbionts

    No full text
    Most animals contain chronic microbial infections that inflict no harm on their hosts. Recently, the gut microflora of humans and other animals have been characterized. However, little is known about the forces that shape the diversity of these bacterial communities. In this work, comparative genomics was used to investigate the evolutionary dynamics of host-adapted bacterial communities, using Wolbachia infecting arthropods and Lactobacteria infecting bees as the main model systems. Wolbachia are maternally inherited bacteria that cause reproductive disorders in arthropods, such as feminization, male killing and parthenogenesis. These bacteria are difficult to study because they cannot be cultivated outside their hosts. We have developed a novel protocol employing multiple displacement amplification to isolate and sequence their genomes. Taxonomically, Wolbachia is classified into different supergroups. We have sequenced the genomes of Wolbachia strain wHa and wNo that belong to supergroup A and B, respectively, and are present as a double-infection in the fruit-fly Drosophila simulans. Together with previously published genomes, a supergroup comparison of strains belonging to supergroups A and B indicated rampant homologous recombination between strains that belong to the same supergroup but were isolated from different hosts. In contrast, we observed little recombination between strains of different supergroups that infect the same host. Likewise, phylogenetically distinct members of Lactic acid bacteria co-exist in the gut of the honeybee, Apis mellifera, without transfer of genes between phylotypes. Nor did we find any evidence of co-diversification between symbionts and hosts, as inferred from a study of 13 genomes of Lactobacillus kunkeei isolated from diverse bee species and different geographic origins. Although Lactobacillus kunkeii is the most frequently isolated strain from the honey stomach, we hypothesize that the primary niche is the beebread where the bacteria are likely to contribute to the fermentation process. In the human gut, the microbial community has been shown to interact with the immune system, and likewise the microbial communities associated with insects are thought to affect the health of their host. Therefore, a better understanding of the role and evolution of endosymbiotic communities is important for developing strategies to control the health of their hosts

    Code repository: Turnover of strain-level diversity modulates functional traits in the honeybee gut microbiome between nurses and foragers

    No full text
    <p>The code was prepared for the publication "Turnover of strain-level diversity modulates functional traits in the honeybee gut microbiome between nurses and foragers" and is referenced as a link to the connected GitHub repository in the associated preprint. Further information can be found in the README.md file in the associated GitHub<a href="https://github.com/Aiswarya-prasad/Publication_Baud_metaG_NvsF_2023"> repository</a>, which is also the source of the most up-to-date documentation.</p&gt

    Testing the Reproducibility of Multiple Displacement Amplification on Genomes of Clonal Endosymbiont Populations

    No full text
    The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated

    Testing the Reproducibility of Multiple Displacement Amplification on Genomes of Clonal Endosymbiont Populations

    Get PDF
    The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated

    Candidate innate immune system gene expression in the ecological model Daphnia

    Get PDF
    The last ten years have witnessed increasing interest in host–pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host–pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia–pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia–Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia–Pasteuria interaction

    Use of patient-controlled psychiatric hospital admissions: patients’ perspective

    No full text
    <p><b>Background:</b> By patient-controlled admission (PCA), psychiatric patients with a PCA contract can initiate a brief admission without a health professional gatekeeper. However, research regarding use of PCA is scarce.</p> <p><b>Aims:</b> In this Danish multi-centre study, motives for and satisfaction with PCA were explored.</p> <p><b>Methods:</b> During a 1-year period, patients from 11 Danish mental health units evaluated PCA using a questionnaire developed for the purpose.</p> <p><b>Results:</b> In total, 190 patients evaluated 462 admissions. The majority had concluded a PCA contract to receive early help. PCA was mostly initiated because of mental health conditions, but also because of social and everyday problems. The purpose was mainly to be at peace and prevent symptom increase. Patients from units with a quarantine period felt more ready for discharge than the others. Patients were in general satisfied with PCA (61.7%), but patients who hoped for improved medication or wished to obtain more care were less satisfied.</p> <p><b>Conclusions:</b> Patients can use PCA as a means to receive timely help. Motives for patients seeking help are not limited to mental conditions. Expectations that cannot be met within the organizational structure of the PCA programme are associated with less satisfaction. However, regional differences in structures were associated with satisfaction. Patients who had access to shorter PCAs were more satisfied, and a quarantine period may even help patients become more ready for discharge. A brief admission period does not cause dissatisfaction at discharge and can be used in the clinical setting.</p

    Comparative Genomics of Wolbachia and the Bacterial Species Concept

    Get PDF
    The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally transmitted genes
    corecore