263 research outputs found

    London calling: The 5th UK Cellular Microbiology Network Meeting

    Get PDF

    Diabetes and the Risk of Developing Parkinson’s Disease in Denmark

    Get PDF
    Objective: Insulin contributes to normal brain function. Previous studies have suggested associations between midlife diabetes and neurodegenerative diseases, including Parkinson’s disease. Using Danish population registers, we investigated whether a history of diabetes or the use of antidiabetes drugs was associated with Parkinson’s disease. Research Design and Methods: From the nationwide Danish Hospital Register hospital records, we identified 1,931 patients with a first-time diagnosis of Parkinson’s disease between 2001 and 2006. We randomly selected 9,651 population control subjects from the Central Population Registry and density matched them by birth year and sex. Pharmacy records comprising all antidiabetes and anti-Parkinson drug prescriptions in Denmark were available. Odds ratios (ORs) were estimated by logistic regression models. Results: Having diabetes, as defined by one or more hospitalizations and/or outpatient visits for the condition, was associated with a 36% increased risk of developing Parkinson’s disease (OR 1.36 [95% CI 1.08–1.71]). Similarly, diabetes defined by the use of any antidiabetes medications was associated with a 35% increased Parkinson’s disease risk (1.35 [1.10–1.65]). When diabetes was defined as the use of oral antidiabetes medications, effect estimates were stronger in women (2.92 [1.34–6.36]), whereas when diabetes was defined as any antidiabetes drug prescription, patients with early-onset Parkinson’s disease were at highest risk (i.e., Parkinson’s disease diagnosed before the age of 60 years; 3.07 [1.65–5.70]). Conclusions: We found that a diagnosis of, or treatment received for, diabetes was significantly associated with an increased risk of developing Parkinson’s disease, especially younger-onset Parkinson’s disease. Our results suggest a common pathophysiologic pathway between the two diseases. Future studies should take age at Parkinson’s disease onset into account

    The effectiveness of classroom vocabulary intervention for adolescents with language disorder

    Get PDF
    Purpose Phonological-semantic intervention has been shown to be effective in enhancing the vocabulary skills of children with language disorder in small-group or individual settings. Less is known about vocabulary interventions for adolescents with language disorder in whole-class models of delivery. The current study investigated the effectiveness of phonological-semantic vocabulary intervention for adolescents with language disorder, delivered by secondary school teachers within science lessons. Methods Seventy-eight adolescents with language disorder, aged 11 – 13 years, were taught science curriculum words by teachers in class, under two conditions: 1) 10 words taught through usual teaching practice; and 2) 10 matched words taught using an experimental intervention known as Word Discovery, which embedded phonological-semantic activities into the teaching of the syllabus. Ten similar control words received no intervention. Word knowledge was assessed pre-intervention, post-intervention, and follow-up. Results At pre-intervention, measures of depth of word knowledge and expressive word use did not differ between usual teaching practice and experimental words. At post-intervention, depth of knowledge of experimental words was significantly greater than that of usual teaching practice words. This significant advantage was not maintained at follow-up, although depth of knowledge for experimental words remained significantly higher at follow-up than at preintervention. At post-intervention, expressive use of experimental words was significantly greater than that of usual teaching practice words, and this significant difference was maintained at follow-up. There was no change in students’ depth of knowledge or expressive use of no-intervention words over time, confirming that the findings were not due to maturity or practice effects. Conclusion The experimental intervention was more effective than usual teaching practice in increasing the word knowledge of participants. Clinical and teaching implications include the importance of intervening during the adolescent years, with classroom vocabulary intervention being a viable option for collaborative teacher and speech and language therapy/pathology practice

    Hif-1α-Induced Expression of Il-1β Protects against Mycobacterial Infection in Zebrafish.

    Get PDF
    Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tuberculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In this study we use an Il-1β fluorescent transgenic line to show that there is an early innate immune proinflammatory response to well-established zebrafish models of inflammation and Mycobacterium marinum infection. We demonstrate that host-derived hypoxia signaling, mediated by the Hif-1α transcription factor, can prime macrophages with increased levels of Il-1β in the absence of infection, upregulating neutrophil antimicrobial NO production, leading to greater protection against infection. Our data link Hif-1α to proinflammatory macrophage Il-1β transcription in vivo during early mycobacterial infection and importantly highlight a host protective mechanism, via antimicrobial NO, that decreases disease outcomes and that could be targeted therapeutically to stimulate the innate immune response to better deal with infections

    Semaphorin 3F signaling actively retains neutrophils at sites of inflammation

    Get PDF
    Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    A DNA Methylation Biomarker of Alcohol Consumption

    Get PDF
    The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42–76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90–0.99) for current heavy alcohol intake (≥ 42 g per day in men and ≥ 28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P \u3c 1 × 10−7. Analysis of the monocyte-derived DNA (n = 1251) identified 62 alcohol-related CpGs at P \u3c 1 × 10-7. In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption

    Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity

    Get PDF
    Purpose of Review: There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Recent Findings: Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Summary: Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment
    corecore