103 research outputs found

    Hypnosis for hot flashes among postmenopausal women study: A study protocol of an ongoing randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hot flashes are a highly prevalent problem associated with menopause and breast cancer treatments. The recent findings from the Women's Health Initiative have important implications for the significance of a non-hormonal, mind-body intervention for hot flashes in breast cancer survivors. Women who take hormone therapy long-term may have a 1.2 to 2.0 fold increased risk of developing breast cancer. In addition, it is now known that hormone therapy with estrogen and progestin is associated with increased risk of cardiovascular disease and stroke. Currently there are limited options to hormone replacement therapy as non-hormonal pharmacological agents are associated with only modest activity and many adverse side effects. Because of this there is a need for more alternative, non-hormonal therapies. Hypnosis is a mind-body intervention that has been shown to reduce self-reported hot flashes by up to 68% among breast cancer survivors, however, the use of hypnosis for hot flashes among post-menopausal women has not been adequately explored and the efficacy of hypnosis in reducing physiologically measured hot flashes has not yet been determined.</p> <p>Methods/design</p> <p>A sample of 180 post-menopausal women will be randomly assigned to either a 5-session Hypnosis Intervention or 5-session structured-attention control with 12 week follow-up. The present study will compare hypnosis to a structured-attention control in reducing hot flashes (perceived and physiologically monitored) in post-menopausal women in a randomized clinical trial. Outcomes will be hot flashes (self-report daily diaries; physiological monitoring; Hot Flash Related Daily Interference Scale), anxiety (State-Trait Anxiety Inventory; Hospital Anxiety and Depression Scale (HADS); anxiety visual analog scale (VAS rating); depression (Center for Epidemiologic Studies Depression Scale), sexual functioning (Sexual Activity Questionnaire), sleep quality (Pittsburgh Sleep Quality Index) and cortisol.</p> <p>Discussion</p> <p>This study will be the first full scale test of hypnosis for hot flashes; one of the first studies to examine both perceived impact and physiologically measured impact of a mind-body intervention for hot flashes using state-of-the-art 24 hour ambulatory physiological monitoring; the first study to examine the effect of hypnosis for hot flashes on cortisol; and the first investigation of the role of cognitive expectancies in treatment of hot flashes in comparison to a Structured-Attention Control.</p> <p>Trial Registration</p> <p>This clinical trial has been registered with ClinicalTrials.gov, a service of the U.S. National Institutes of Health, ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01293695">NCT01293695</a>.</p

    Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia

    Get PDF
    Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection

    Psychedelics and hypnosis: Commonalities and therapeutic implications

    Get PDF
    Background Recent research on psychedelics and hypnosis demonstrates the value of both methods in the treatment of a range of psychopathologies with overlapping applications and neurophenomenological features. The potential of harnessing the power of suggestion to influence the phenomenological response to psychedelics toward more therapeutic action has remained unexplored in recent research and thereby warrants empirical attention. Aims Here we aim to elucidate the phenomenological and neurophysiological similarities and dissimilarities between psychedelic states and hypnosis in order to revisit how contemporary knowledge may inform their conjunct usage in psychotherapy. Methods We review recent advances in phenomenological and neurophysiological research on psychedelics and hypnosis and we summarize early investigations on the coupling of psychedelics and hypnosis in scientific and therapeutic contexts. Results/Outcomes We highlight commonalities and differences between psychedelics and hypnosis that point to the potential efficacy of combining the two in psychotherapy. We propose multiple research paths for coupling these two phenomena at different stages in the preparation, acute phase, and follow-up of psychedelic-assisted psychotherapy in order to prepare, guide, and integrate the psychedelic experience with the aim of enhancing therapeutic outcomes. Conclusions/Interpretation Harnessing the power of suggestion to modulate response to psychedelics could enhance their therapeutic efficacy by helping to increase the likelihood of positive responses, including mystical type experiences

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Direct Visualization of Protease Action on Collagen Triple Helical Structure

    Get PDF
    Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen ¾ fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease

    Co-Crystal Structures of Inhibitors with MRCKβ, a Key Regulator of Tumor Cell Invasion

    Get PDF
    MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 µM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC50 values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts

    Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems

    Get PDF
    Rodent models of focal cerebral ischemia are essential tools in experimental stroke research. They have added tremendously to our understanding of injury mechanisms in stroke and have helped to identify potential therapeutic targets. A plethora of substances, however, in particular an overwhelming number of putative neuroprotective agents, have been shown to be effective in preclinical stroke research, but have failed in clinical trials. A lot of factors may have contributed to this failure of translation from bench to bedside. Often, deficits in the quality of experimental stroke research seem to be involved. In this article, we review the commonest rodent models of focal cerebral ischemia - middle cerebral artery occlusion, photothrombosis, and embolic stroke models - with their respective advantages and problems, and we address the issue of quality in preclinical stroke modeling as well as potential reasons for translational failure
    corecore