78 research outputs found

    Symmetry groups for beta-lattices

    Get PDF

    New features in the ionic states of N2O4: Experimental and theoretical study

    Full text link
    We present a combined experimental and theoretical study focused on the ionic states of the N2O4 molecule. Experimental results regarding photoionization induced by the synchrotron radiation SOLEIL in the 13.5-15.5 eV energy range were obtained using the electron-ion velocity vector correlation method. The potential energy curves for the dissociation of the N-N bond were computed within ab initio multireference wave functions based methods (CASSCF and CASPT2) for the first electronic states of N2O 4 and N2O4

    PID13: LONG-TERM EFFICACY OF LOCAL GUIDELINES TO IMPROVE ANTITETANUS PROPHYLAXIS AND REDUCE COSTS IN AN EMERGENCY DEPARTMENT

    Get PDF

    Circular dichroism in photoionization of H2

    Get PDF
    ABSTRACT: Circular dichroism is a consequence of chirality. However, nonchiral molecules can also exhibit it when the measurement itself introduces chirality, e.g., when measuring molecular-frame photoelectron angular distributions. The few such experiments performed on homonuclear diatomic molecules show that, as expected, circular dichroism vanishes when the molecular-frame photoelectron angular distributions are integrated over the polar electron emission angle. Here we show that this is not the case in resonant dissociative ionization of H2 for photons of 30–35 eV, which is the consequence of the delayed ionization from molecular doubly excited states into ionic states of different inversion symmetry

    Circular dichrosim in photoionization of H2 and D2

    Get PDF
    ABSTRACT: In this work, circular dichroism in H2 (D2) photoionization is studied in detail. We have selected several photon energies for a case study: 19 eV for which only direct ionization to the 1s_g ionization channel is present, 27 eV where autoionization of Q1 doubly excited states takes place, and 32.5 eV for which autoionization from Q1 and doubly excited states and direct ionization to 1s_g and 2p_u channels strongly interfere. The latter case shows clear evidence of different behavior of the photoionization against radiation helicity

    Circular dichroism in molecular-frame photoelectron angular distributions in the dissociative photoionization of H2 and D2 molecules

    Get PDF
    ABSTRACT: The presence of net circular dichroism in the photoionization of nonchiral homonuclear molecules has been put in evidence recently through the measurement of molecular-frame photoelectron angular distributions in dissociative photoionization of H2 [Dowek et al., Phys. Rev. Lett. 104, 233003 (2010)]. In this work we present a detailed study of circular dichroism in the photoelectron angular distributions of H2 and D2 molecules, oriented perpendicularly to the propagation vector of the circularly polarized light, at different photon energies (20, 27, and 32.5 eV). Circular dichroism in the angular distributions at 20 and to a large extent 27 eV exhibits the usual pattern in which inversion symmetry is preserved. In contrast, at 32.5 eV, the inversion symmetry breaks down, which eventually leads to total circular dichroism after integration over the polar emission angle. Time-dependent ab initio calculations support and explain the observed results for H2 in terms of quantum interferences between direct photoionization and delayed autoionization from the Q1 and Q2 doubly excited states into ionic states (1sσg and 2pσu) of different inversion symmetry. Nevertheless, for D2 at 32.5 eV, there is a particular case where theory and experiment disagree in the magnitude of the symmetry breaking: when D+ ions are produced with an energy of around 5 eV. This reflects the subleties associated to such simple molecules when exposed to this fine scrutiny

    Virulence Potential and Genomic Mapping of the Worldwide Clone Escherichia coli ST131

    Get PDF
    Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA). Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate), comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC). In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity) with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected

    Revolutionizing Clinical Microbiology Laboratory Organization in Hospitals with In Situ Point-of-Care

    Get PDF
    BACKGROUND: Clinical microbiology may direct decisions regarding hospitalization, isolation and anti-infective therapy, but it is not effective at the time of early care. Point-of-care (POC) tests have been developed for this purpose. METHODS AND FINDINGS: One pilot POC-lab was located close to the core laboratory and emergency ward to test the proof of concept. A second POC-lab was located inside the emergency ward of a distant hospital without a microbiology laboratory. Twenty-three molecular and immuno-detection tests, which were technically undemanding, were progressively implemented, with results obtained in less than four hours. From 2008 to 2010, 51,179 tests yielded 6,244 diagnoses. The second POC-lab detected contagious pathogens in 982 patients who benefited from targeted isolation measures, including those undertaken during the influenza outbreak. POC tests prevented unnecessary treatment of patients with non-streptococcal tonsillitis (n = 1,844) and pregnant women negative for Streptococcus agalactiae carriage (n = 763). The cerebrospinal fluid culture remained sterile in 50% of the 49 patients with bacterial meningitis, therefore antibiotic treatment was guided by the molecular tests performed in the POC-labs. With regard to enterovirus meningitis, the mean length-of-stay of infected patients over 15 years old significantly decreased from 2008 to 2010 compared with 2005 when the POC was not in place (1.43±1.09 versus 2.91±2.31 days; p = 0.0009). Altogether, patients who received POC tests were immediately discharged nearly thrice as often as patients who underwent a conventional diagnostic procedure. CONCLUSIONS: The on-site POC-lab met physicians' needs and influenced the management of 8% of the patients that presented to emergency wards. This strategy might represent a major evolution of decision-making regarding the management of infectious diseases and patient care
    • …
    corecore