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Abstract

We present a construction of symmetry plane-groups for quasiperiodic point-sets
named beta-lattices. The framework is issued from beta-integers counting systems.
The latter are determined by Pisot-Vijayaraghavan (PV) algebraic integers β > 1.
Beta-lattices are vector superpositions of beta-integers. The sets of beta-integers can
be equipped with abelian group structures and internal multiplicative laws. When
β = (1 +

√
5)/2, 1 +

√
2 and 2 +

√
3, we show that these arithmetic and algebraic

structures lead to freely generated symmetry plane-groups for beta-lattices. These
plane-groups are based on repetitions of discrete “adapted rotations and transla-
tions”. Hence beta-lattices, endowed with these adapted rotations and translations,
can be viewed like lattices. The quasiperiodic function ρS(n), defined on the set
of beta-integers as counting the number of small tiles between the origin and the
nth beta-integer, plays a central part in these new group structures. In particular,
this function behaves asymptotically like a linear function. As an interesting conse-
quence, beta-lattices and their symmetries behave asymptotically like lattices and
lattice symmetries.
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1 Introduction

Underlying the notion of a tiling there is the notion of a point-set. In this paper we assume
point-sets to be Delaunay sets [16,17]. There exist infinitely many possibilities to build a tiling
from a Delaunay set, and conversely, there are infinitely many ways to build a Delaunay set
from its associated tiling. A possible method is to consider the set of vertices of a tiling as an
associated Delaunay set [12], which is the correspondence we will assume in the following. We
will indifferently mention a tiling or its associated Delaunay set, displaying or not the edges in
the figures.
In general, there does not exist a symmetry group for a tiling nor for its associated Delaunay
set, except for periodic tilings and lattices. Historically, the latter merge from Crystallography,
and are associated with crystals. Note that in 1991, after the discovery of modulated phases
and of quasicrystals, Crystallography have been divided in two categories: periodic Crystallog-
raphy, and aperiodic Crystallography [10]. Let us sketch the general algebraic frame of periodic
Crystallography.

Definition 1 A crystallographic group in Rd, or a space-group in Rd, is a discrete group of
isometries whose maximal translation subgroup is of rank d, hence isomorphic to Zd.

Definition 2 A periodic crystal is the orbit under the action of a crystallographic group of a
finite number of points of Rd.

We can illustrate these definitions with the square lattice Λ = Z+Zei π
2 , which is a classical lattice

case. This set presents a 4-fold rotational symmetry. The symmetry space-group G associated
with Λ is the semi-direct product of the translation-group of Λ by its rotation-group

G = Λo {1,−1, ei π
2 , e−i π

2 } ,

its internal law being
(λ,R)(λ′, R′) = (λ + Rλ′, RR′) ,

with λ, λ′ ∈ Λ and R, R′ ∈ {1,−1, ei π
2 , e−i π

2 }.
In the context of the 18th problem of Hilbert, Bieberbach has shown that the number of isomor-
phism classes (equivalently of conjugation classes) of crystallographic groups is finite for all d [25].
Therefore the number of crystallographic groups leaving invariant a fixed crystal of Rd is finite.

For quasicrystals, as a consequence of aperiodicity, we do not have such a convenient algebraic
structure of symmetry space-groups, as in the periodic case. For quasicrystals determined by
some quadratic Pisot-Vijayaraghavan (PV) units, generically denoted by β > 1, we can introduce
an underlying structure, the so-called beta-lattice [1]. Experimentally observed quasicrystals are

related to well known PV numbers [11], namely for β = τ = 1+
√

5
2

, β = δ = 1 +
√

2, and

β = θ = 2 +
√

3.

Beta-lattices are based on beta-integers. The set of beta-integers, denoted by Zβ, is a self-similar
Meyer set, with self-similarity factor β. Recall that a Meyer set is a Delaunay set Λ ∈ Rd if
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Λ− Λ ⊂ Λ + F , where F is a finite set. We generically define a beta-lattice Γ = Γ(β) ∈ Rd by

Γ =
d∑

i=1

Zβei ,

with (ei) a base of Rd. Therefore, Γ is a self-similar Meyer set with self-similarity factor β.
With this respect, beta-lattices are eligible frames in which one could think of the properties of
quasiperiodic point-sets and tilings, thus generalizing the notion of lattice in periodic cases.

The aim of the present work is to extend the algebraic frame of periodic crystals to beta-lattices:
we construct a space-group matching Definition 1 such that the beta-lattice is the orbit under
the action of this space-group of a finite set of points of R2, as in Definition 2. In other words, we
show that a beta-lattice is at least a “crystal” for a “space-group” that we determine explicitly.

Fig. 1. A tiling of the τ -lattice Γ1(τ).

We consider the cases where β is one of the “quasicrystallographic” number mentioned above.
Moreover we restrict ourselves to the case d = 2. Therefore we rather talk of “plane-groups”. We
proceed by, first recalling the internal additive and multiplicative laws on the set of beta-integers
Zβ ⊂ R, which “almost” endow this set with a structure of ordered ring (order induced by that
of R) [6], then by establishing a set of algebraic operations, acting on the given beta-lattice by
leaving it invariant. We report on the algebraic constructions of such extended plane-groups,
leaving aside the delicate questions of compatible metrics and of the number (finite or infinite)
of possible “space-groups” leaving invariant a given beta-lattice. However we show that the
internal transformations defined on beta-lattices are compatible with Euclidian transformations.
Compatibility property is given by the following definition.
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Definition 3 Let > be an internal law defined on Rd, and let Λ ⊂ Rd be a Delaunay set. We
say that an internal operation >̂ defined on Λ is >-compatible with the operation > if for all λ,
λ′ ∈ Λ, λ>λ′ ∈ Λ implies λ>λ′ = λ>̂λ′.

The article is organized as follows. In Section 2 we recall some definitions on Delaunay sets,
Meyer sets, and on cyclotomic PV numbers. In Section 3 we recall results on the arithmetics
and the internal laws on Zβ. Most of this material can be found in [6], and is essential for
the understanding of the present article. In Section 4 we give the definition of beta-lattices in
the plane, together with their rotational and translational properties. A general form for beta-
lattices is Γ1(β) = Zβ +Zβei 2π

N for β a cyclotomic PV unit of symmetry N . Figure 1 is a possible
tiling of such a beta-lattice with β = τ , the golden mean, namely a τ -lattice. Section 5 is the
central part of the article, with its main result: the construction of the plane-groups associated
with the beta-lattices. We use the internal additive and multiplicative laws on Zβ to define a
symmetry point-group for Γ1(β) in Theorem 1, and the free symmetry plane-group of Γ1(β) in
Theorem 2. Then we illustrate the action of the symmetry plane-group of Γ1(τ) on the tiles
of a τ -lattice. Section 6 is dedicated to the asymptotic properties of beta-lattices. The striking
feature which is shown there is that asymptotically the set of beta-integers behaves like a ring,
but with a contraction factor. We touch here the fundamental question whether a beta-lattice
can be considered as a module over an ordered ring. If it were the case, the present construction
would enter into the realm of the Artin-Schreier theory (Lam [13] chapter 6). Eventually, we make
explicit the rotation actions for the quasicrystallographic numbers τ , δ and θ in the Appendix.

2 Preliminaries

2.1 Delaunay sets and Meyer sets

Delaunay sets were introduced as a mathematical idealization of a solid-state structure, see [12].
A set Λ ⊂ Rd is said to be uniformly discrete if there exists r > 0 such that ||x− y|| ≥ r, for all
x, y ∈ Λ. We can equivalently say that every closed ball of radius r contains at most a point of
Λ. A set Λ is said to be relatively dense if there exists R > 0 such that for all y ∈ Rd, there exists
x ∈ Λ such that ||x− y|| < R. We can equivalently say that every open ball of radius R contains
at least a point of Λ. If both conditions are satisfied, Λ is said to be a Delaunay set. The possible
range of ratios R/r is studied in [21] as a function of d. The action of the group of rigid motions
(or Euclidean displacements) of Rd on the set of uniformly discrete sets and Delaunay sets can
be found in [22].
The first models of quasicrystal were introduced by Meyer [16–18], and they are now known as
Meyer sets. A set Λ ⊂ Rd is said to be a Meyer set if it is a Delaunay set and if there exists a
finite set F such that

Λ− Λ ⊂ Λ + F.

This is equivalent to Λ−Λ being a Delaunay set. A review on Meyer sets can be found in [19,20].
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2.2 Crystals and Bravais lattices

Bravais lattices are used as mathematical models for crystals. A Bravais lattice is an infinite
discrete point-set such that the neighborhoods of a point are the same whichever point of the
set is considered. Geometrically, a Bravais lattice is characterized by all Euclidean transforma-
tions (translations and possibly rotations) that transform the lattice into itself. The condition
2 cos 2π

N
∈ Z characterizes Bravais lattices which are left invariant under rotation of 2π/N , N -fold

Bravais lattices, in R2 (and in R3). Let us put ζ = e
2πi
N , ζN = 1. If we consider the Z-module in

the plane:

Z[ζ] = Z+ Zζ + Zζ2 + · · ·+ ZζN−1 = Z[2 cos
2π

N
] + Z[2 cos

2π

N
]ζ,

we get the cyclotomic ring of order N . This N -fold structure is generically dense in C, except
precisely for the crystallographic cases. We indeed check that Z[ζ] = Z for N = 1 or 2, Z[ζ] =
Z + Zi for N = 4 (square lattice), and Z[ζ] = Z + Zei π

3 for the triangular and hexagonal cases
N = 3 and N = 6. Note that a Bravais lattice is a Meyer set such that F = {0}.

2.3 Non-crystallographic cases

If N is not crystallographic, 2 cos 2π
N

is an algebraic integer of degree m = ϕ(N)/2 ≤ b(N −1)/2c
where ϕ is the Euler function and byc denotes the integer part of a real number y. We shall now
recall some definitions on numbers.
A Pisot-Vijayaraghavan number, or PV number in short, is an algebraic integer β > 1 such that
all its Galois conjugates (i.e. other roots of the involved algebraic equation) have their moduli
strictly smaller than 1. A cyclotomic PV number with symmetry of order N is a PV number β
such that

Z[2 cos
2π

N
] = Z[β]. (1)

Then Z[ζ] = Z[β] + Z[β]ζ, with ζ = ei 2π
N , is a ring invariant under rotation of order N (see [1]).

This ring is the natural framework for two-dimensional structures having β as scaling factor, and
2π/N rotational symmetry. In this paper we will focus on quadratic PV units. They are of two
kinds. The first kind is such that β is solution of

X2 = aX + 1 a ≥ 1 ,

and its conjugate is β′ = −1/β. The second kind is such that β is solution of

X2 = aX − 1 a ≥ 3 ,

and its conjugate is β′ = 1/β. Let us give some examples of those numbers, together with their
respective Galois conjugates, related to non-crystallographic cyclotomic structures in the plane,
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and minimal polynomials, the following notations being used throughout the article:

N = 5 β = τ =
1 +

√
5

2
= 1 + 2 cos

2π

5
τ ′ = −1

τ
= 1− τ , X2 −X − 1 (pentagonal case),

N = 10 β = τ =
1 +

√
5

2
= 2 cos

2π

10
τ ′ = −1

τ
= 1− τ , X2 −X − 1 (decagonal case),

N = 8 β = δ = 1 +
√

2 = 1 + 2 cos
2π

8
δ′ = −1

δ
= 2− δ , X2 − 2X − 1 (octogonal case),

N = 12 β = θ = 2 +
√

3 = 2 + 2 cos
2π

12
θ′ =

1

θ
= 4− θ , X2 − 4X + 1 (dodecagonal case).

Note that in the case N = 7, we have β = 1 + 2 cos 2π
7

which is solution of the cubic equation
X3 − 2X2 −X + 1 = 0. At this point, we should be aware that finding a PV number such that
the cyclotomic condition (1) is fulfilled for N ≥ 16 is an open problem!

3 Additive and multiplicative properties of beta-integers

3.1 Beta-expansions

When a number β > 1 appears as a kind of fundamental invariant in a given structure, it is
tempting to introduce into the procedure of understanding the latter a counting system based
precisely on this β. Let us explain here what we mean by counting system.
Among all beta-representations of a real number x ≥ 0, i.e. infinite sequences (xi)i≤k, such that
x =

∑
i≤k xiβ

i for a certain integer k, there exists a particular one, called the beta-expansion,
which is obtained through the “greedy algorithm” (see [24] and [23]). Recall that byc is the
integer part of the real number y, and denote by {y} the fractional part of y. There exists k ∈ Z
such that βk ≤ x < βk+1. Let xk = bx/βkc and rk = {x/βk}. For i < k, put xi = bβri+1c, and
ri = {βri+1}. Then we get the expansion x = xkβ

k + xk−1β
k−1 + · · · . If x < 1 then k < 0, and

we put x0 = x−1 = · · · = xk+1 = 0. The beta-expansion of x is denoted by

〈x〉β = xkxk−1 · · · x1x0 · x−1x−2 · · ·

The digits xi obtained by this algorithm are integers from the set A = {0, . . . , dβe−1}, called the
canonical alphabet, where dβe denotes the smallest integer larger than β. If an expansion ends
in infinitely many zeros, it is said to be finite, and the ending zeros are omitted. For instance, if
β = τ ≈ 1 ·618 · · · , then xi ∈ {0, 1}. The τ -expansion of, say, 4 = τ 2 +1+1/τ 2 is 〈4〉τ = 101 ·01.
There is a representation which plays an important role in the theory. The beta-expansion of 1,
denoted by dβ(1), is computed by the following process [24]. Let the beta-transformation be
defined on [0, 1] by Tβ(x) = βx mod 1. Then dβ(1) = (ti)i≥1, where ti = bβT i−1

β (1)c. Bertrand
has proved that if β is a PV number, then dβ(1) is eventually periodic [2]. For instance, dτ (1) = 11,
dδ(1) = 21, and dθ(1) = 322 · · · = 3(2)ω, where (·)ω means that the digit between parenthesis
is repeated an infinite number of times. A number β such that dβ(1) is eventually periodic is
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traditionally called a beta-number. Since these numbers were introduced by Parry [23], we propose
to call them Parry numbers. When dβ(1) is finite, β is said to be a simple Parry number.

3.2 The set of beta-integers

We now come to the notion of beta-integer. The set of beta-integers is the set of real numbers
whose beta-expansions are polynomial,

Zβ = {x ∈ R | 〈|x|〉β = xk · · · x0}
=Z+

β ∪ (−Z+
β )

where Z+
β is the set of non-negative beta-integers. The set Zβ is self-similar and symmetrical with

respect to the origin
βZβ ⊂ Zβ, Zβ = −Zβ.

It has been shown in [3] that if β is a PV number then Zβ is a Meyer set. This means that there
exists a finite set F such that Zβ − Zβ ⊂ Zβ + F . This beta-dependent set F has to be charac-
terized in order to see to what extent beta-integers differ from ordinary integers with respect to
additive and multiplicative structures. This problem is solved in [3,4,6] for all quadratic PV units
and for a few higher-degree cases (see also [27]). We now restrict the presentation to quadratic
PV units. There are two cases to consider.

Case 1. β is solution of X2 = aX+1, a ≥ 1. The Galois conjugate is β′ = −1/β. The canonical
alphabet is equal to A = {0, . . . , a}, the beta-expansion of 1 is finite, equal to dβ(1) = a1, and
every positive number of Z[β] has a finite beta-expansion [7]. Denote A = {L, S}. Define the
substitution σβ by

σβ :





L 7→ LaS

S 7→ L.

The fixed point of the substitution, denoted by σ∞β (L), is associated with a tiling of the positive
real line, made with the two tiles L and S, where the lengths of the tiles are `(L) = 1, `(S) =
Tβ(1) = β − a = 1/β, see [26,5]. The nodes of this tiling are the positive beta-integers.

Case 2. β is solution of X2 = aX − 1, a ≥ 3. The Galois conjugate is β′ = 1/β. The
canonical alphabet is equal to A = {0, . . . , a− 1}, the beta-expansion of 1 is eventually periodic,
equal to dβ(1) = (a − 1)(a − 2)ω, and every positive number of Z[β] has an eventually periodic
beta-expansion, which is finite for numbers from N[β], [7]. The substitution σβ is defined on
A = {L, S} by

σβ :





L 7→ La−1S

S 7→ La−2S.
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As in Case 1, the fixed point of the substitution is denoted by σ∞β (L), and is associated with
a tiling of the positive real line, made with the two tiles L and S. The lengths of the tiles are
`(L) = 1, `(S) = Tβ(1) = β − (a− 1) = 1− 1/β [26,5]. The nodes of this tiling are the positive
beta-integers.

In both cases we shall denote by |σq
β(L)| the number of letters in the word generated by σq

β(L),
and by |σq

β(L)|L, respectively |σq
β(L)|S, the number of letters L, respectively S, in the later word.

3.3 Beta-integers arithmetics

Since Zβ is a Meyer set symmetrical with respect to the origin, we have Zβ − Zβ = Zβ + Zβ ⊂
Zβ + F . Hence the set Zβ can be qualified as “quasi-additive”. It can also be qualified as “quasi-
multiplicative”. Accordingly, addition and multiplication of beta-integers are characterized below.

• In Case 1 we have

Zβ + Zβ ⊂Zβ + {0,±(1− 1

β
)} ⊂ Zβ/β2, (2)

Zβ × Zβ ⊂Zβ + {0,± 1

β
, . . . ,±a

β
} ⊂ Zβ/β2. (3)

For instance, for β = τ , 1 + 1 = 2 = τ + (1− 1
τ
), and (τ 2 + 1)(τ 2 + 1) = τ 5 + τ 2 − 1

τ
.

• In Case 2 we have

Zβ + Zβ ⊂Zβ + {0,± 1

β
} = Z̃β, (4)

Z+
β + Z+

β ⊂Z+
β /β,

Zβ × Zβ ⊂Zβ + {0,± 1

β
, . . . ,±a− 1

β
} ⊂ Zβ/β. (5)

For instance, for β = θ, 2 + 2 = θ + 1
θ

= 2× 2.

The set Z̃β, introduced in Equation (4), is called the set of decorated beta-integers. This set
plays an important role in the theory of algebraic model sets, see for instance [6], and is to be
mentioned in the two-dimensional case (Figure 4).

3.4 Beta-integers as an additive group

Let bm and bn be the mth and nth beta-integers.
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Definition 4 We define the beta-addition as the internal additive law on the set of beta-integers,
as

bm ⊕ bn = bm+n .

The beta-substraction is defined by

bm ª bn = bm−n = bm ⊕ (−bn) .

The set of beta-integers endowed with the beta-addition has an abelian group structure [4,6].
Actually, we can endow any countable strictly increasing sequence S = (sn)n∈Z of real numbers,
s0 = 0, with such an internal additive law by simple isomorphic transport of the additive group
structure of the integers, the additive law of S being defined by

sm ⊕ sn
def
= sm+n.

Recall that the internal additive law ⊕ defined on S, is said to be compatible with addition of
real numbers if for all (m,n) ∈ Z2, sm + sn ∈ S implies sm + sn = sm⊕ sn, and obviously, for an
arbitrary sequence S, the law ⊕ is not compatible with the addition of real numbers. Yet this
property holds true for Zβ!

Lemma 1 Beta-addition is compatible with addition if β is a quadratic PV unit.

Proof. It has been proven in [4] and [6] that beta-addition has the following minimal distortion
property with respect to addition: for all (bm, bn) ∈ Z2

β with β a quadratic PV unit,

bm + bn − (bm ⊕ bn) ∈



{0,±(1− 1

β
)} in Case 1,

{0,±1/β} in Case 2.
(6)

Put bm + bn = bq. Then bq − (bm ⊕ bn) verifies Equation (6), which implies bq − (bm ⊕ bn) = 0,
since the distances between two consecutive beta-integers are `(L) = 1 or `(S) = 1/β in Case 1
and `(S) = 1− 1/β in Case 2. Since bm ⊕ bn = bm+n, we have q = m + n.

For instance, if β = τ , then 1 ⊕ 1 = τ and 2 − τ = 1 − 1/τ , and if β = θ, then 2 ⊕ 2 = θ and
4− θ = 1/θ.

3.5 Internal multiplicative law for beta-integers

We could attempt to play the same game with multiplication by defining

bm“× ”bn
def
= bmn,

for all (bm, bn) ∈ Z2
β. However, we reject this definition of an internal multiplicative law since it is

not consistent with multiplication in R. For instance, for β = τ , b2 × b2 = τ × τ = τ 2 = b3 6= b4.
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Definition 5 We define the quasi-multiplication as the internal multiplicative law on the set of
beta-integers, as

bm ⊗ bn =





b(mn−aρS(m)ρS(n)) in Case 1,

b(mn−ρS(m)ρS(n)) in Case 2,
(7)

where, for n ≥ 0, ρS(n) denotes the number of tiles S between b0 = 0 and bn [6]. For instance,
for τ , ρS(5) = 2 while for θ, ρS(5) = 1. Geometrically, the nth beta-integer is the right vertex of
the nth tile of the tiling associated with Zβ, which can be expressed by bn = n+(−1+ l(S))ρs(S)
and from which we derive the following

ρS(n) =
1

1− 1/β
(n− bn) , Case 1 ,

ρS(n) = β(n− bn) , Case 2 .

For n < 0, ρS(n) = −ρS(−n).

Lemma 2 Quasi-multiplication is compatible with multiplication of real numbers if β is a quadratic
PV unit.

Proof. Quasi-multiplication has minimal distortion property with respect to multiplication [4,6]:
for all (bm, bn) ∈ Z2

β with β quadratic PV unit,

bmbn − (bm ⊗ bn) ∈



{(0,±1, . . . ,±a)(1− 1

β
)} Case 1,

{(0, 1, . . . , a− 1)sgn(bmbn)

β
} Case 2.

(8)

Put bmbn = bq. Then bq − (bm⊗ bn) verifies Equation (8), which implies bq − (bm⊗ bn) = 0, since
the distances between two consecutive beta-integers are `(L) = 1 or `(S) = 1/β in Case 1 and
`(S) = 1− 1/β in Case 2. Since bm⊗ bn = bmn−aρS(m)ρS(n) in Case 1 and bm⊗ bn = bmn−ρS(m)ρS(n)

in Case 2, we have q = mn− aρS(m)ρS(n) in Case 1, and q = mn− ρS(m)ρS(n) in Case 2.

An interesting outcome of this multiplicative structure is the following explicit result concerning
self-similarity properties of the set of beta-integers.

Let U = (uq)q∈N be the linear recurrent sequence of integers associated with β. In Case 1, the
uq are defined by uq+2 = auq+1 + uq with u0 = 1, u1 = a + 1. In Case 2, the uq are defined by
uq+2 = auq+1 − un with u0 = 1, u1 = a. The recurrence is possibly extended to negative indices.

Proposition 1 Let β be a quadratic PV unit, and Zβ the corresponding set of beta-integers.
Then for q ∈ N and bn ∈ Zβ we have the self-similarity formulas:

βq bn = buqbn = buq ⊗ bn =buq n−aρS(uq)ρS(n) = buq n−(uq−uq−1) ρS(n) (in Case 1),

βq bn = buqbn = buq ⊗ bn =buq n−ρS(uq)ρS(n) = buq n−(uq−1) ρS(n) (in Case 2).

10



The proof is a direct consequence of the definition of the quasi-multiplication and of the following
lemma giving some of the properties of the counting function ρS.

Lemma 3 The values assumed by the counting function ρS(n) when n = uq ∈ U are

ρS(uq) =
uq − uq−1

a
, (in Case 1),

ρS(uq) = uq−1, (in Case 2).

Proof. Case 1. Let wq = ρS(uq). By construction, uq = |σq
β(L)| and wq = |σq

β(L)|S. Therefore the
sequence (wq) satisfies the same linear recurrence as (uq), that is, wq = awq−1+wq−2, with w0 = 0,
w1 = 1. Thus w2 = aw1 + w0 = (u2 − u1)/a = a and w3 = aw2 + w1 = (u3 − u2)/a = a2 + 1. The
recurrence is proved through wq+1 = awq+wq−1 = a(uq−uq−1)/a+(uq−1−uq−2)/a = (uq+1−uq)/a.
Case 2. Let wq = ρS(uq). We have wq = awq−1 − wq−2, with w0 = 0 and w1 = 1. Then
w2 = aw1 − w0 = u1 = a and w3 = aw2 − w1 = u2 = a2 − 1. The recurrence is proved through
wq+1 = awq − wq−1 = auq−1 − uq−2 = uq.

It should be noticed that quasi-multiplication does not define a group for not being associative
and is not distributive with respect to beta-addition. So it seems hopeless to obtain a ring
structure, like we have with integers, with such an internal multiplicative law. Note that beta-
addition and quasi-multiplication are related to some operations in numeration systems studied
in [9,14,15]. Nevertheless, the set of beta-integers recovers a ring structure asymptotically, see
Section 6 for details.

4 Beta-lattices in the plane

4.1 General considerations

We have seen that the condition 2 cos(2π/N) ∈ Z, i.e. N = 1, 2, 3, 4 and 6, characterizes N -
fold Bravais lattices in R2 (and in R3). We would like to generalize this notion when N is
quasicrystallographic i.e. N = 5, 10, 8 and 12, respectively associated with one of the cyclotomic
Pisot units τ = 2 cos(2π/10), δ = 1 + 2 cos(2π/8) and θ = 2 + 2 cos(2π/12). As a consequence of
the results presented above, if (ei) is a base of Rd

Γ =
d∑

i=1

Zβei

is a Meyer set and a lattice for the law ⊕. Moreover Zβ⊗Γ ⊂ Γ. We shall adopt the generic name
of beta-lattice for such a Γ. Examples of beta-lattices in the plane are point-sets of the form

Γq(β) = Zβ + Zβζq ,
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with ζ = ei 2π
N , for 1 ≤ q ≤ N − 1. Note that the latter are not rotationally invariant. Examples

of rotationally invariant point-sets based on beta-integers are

Λq
def
=

N−1⋃

j=0

Γqζ
j , 1 ≤ q ≤ N − 1 ,

and

Zβ[ζ]
def
=

N−1∑

j=0

Zβζj.

Note that the sets Λq and Zβ[ζ] are Meyer sets.

Let us now focus on the simplest case, namely N = 5 or 10. It is more convenient to introduce
the root of unity ζ = e

iπ
5 , since τ = 2 cos π/5 = ζ + ζc, where ζc is the complex conjugate of ζ.

We obtain the set

Zτ [ζ] ≡ Zτ + Zτζ + Zτζ
2 + Zτζ

3 + Zτζ
4.

Consider now the following τ -lattices in the plane,

Γq = Zτ + Zτζ
q, q = 1, 2, 3, or 4,

The following inclusions were proven in [3]

Γq ⊂ Zτ [ζ] ⊂ Γq

τ 4
.

It has been shown that a large class of aperiodic sets can be embedded in beta-lattices such as
Γq(β) (see [3]).

On Figures 2, 3 and 4, we displayed the τ -lattice Γ1(τ), the δ-lattice Γ1(δ) and the decorated
θ-lattice Γ1(θ), respectively, both as point-sets, and as tilings.

Fig. 2. The τ -lattice Γ1(τ) with points (left), and its trivial tiling made by joining points along the
horizontal axis, and along the direction defined by ζ.
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Fig. 3. The δ-lattice Γ1(δ) with points (left), and its trivial tiling obtained by joining points along the
horizontal axis, and along the direction defined by ζ.

Fig. 4. The decorated θ-lattice Γ̃1(θ) with points (left), and its trivial tiling obtained by joining points
along the horizontal axis, and along the direction defined by ζ.

4.2 Rotational properties of the beta-lattices Γ1(β)

Although beta-lattices are not rotationally invariant, we can nevertheless study the action of
rotations on them. In this section, and throughout the rest of the article, we focus on Γ1(β).
Note that for β = τ and δ, any beta-lattice Γq(β) is a subset of the properly scaled beta-lattice
Γ1(β). Therefore, the rotational properties of Γq(β) can always be reexpressed in terms of the
rotational properties of Γ1(β). Note that since θ is a quadratic PV unit of the second kind, the
game is slightly different, since the θ-lattices Γq(θ) are not subsets of the properly scaled Γ1(θ),
for q 6= 1, but of its decorated version Γ̃1(θ).

We introduce the algebraic integer associated with ζ, χ = ζ + ζ = 2 cos(2π/N), which entails
ζ2 = −1 + χζ, and

ζq = ηq + νqζ , q ∈ {0, 1, . . . , N − 1} . (9)
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A rotation by q2π/N on an arbitrary element bm + bnζ of Γ1(β) gives

ζq(bm + bnζ) = (ηqbm − νqbn) + (νqbm + (ηq + νqχ)bn)ζ , (10)

which is not an element of Γ1(β) in general, but belongs to a deflated version of Γ1(β) by a
certain factor. If we consider the values of the pairs (ηq, νq) and of ηq + νqχ, when β assumes
the specific values τ and δ, we can determine this deflation factor. When β = θ, ζq(bm + bnζ) is

included in the twice decorated θ-lattice
˜̃
Γ1(θ), as will be shown explicitly.

• When β = τ , the results are given for ζ = ei 2π
10 , χ = τ .

q = 0 1 2 3 4

(ηq, νq) = (1, 0) (0, 1) (−1, τ) (−τ, τ) (−τ, 1)

ηq + νqχ = 1 τ τ 1 0 ,

together with (ηq+5, νq+5) = (−ηq,−νq). Hence

ζqΓ1(τ)⊂Γ1(τ) +
(
{0,±(1− 1

τ
)}+ {0,±(1− 1

τ
)}ζ

)

⊂ Γ1(τ)

τ 2
.

Note that since χ = τ , Γ1(τ) is endowed with specific properties which are not encountered in
other cases, namely when β = δ, and β = θ.

Lemma 4 For ζ = ei π
5 , all elements of the cyclic group {ζq, q ∈ {0, 1, 2, . . . , 9}} are elements of

the τ -lattice Γ1(τ).

Proof. The demonstration is trivial from the values assumed by ηq and νq in the case of τ ,

ζq = ηq + νqζ, with ηq, νq ∈ {0,±1,±τ}.

Also note that from the self-similarity property of Zτ we have ηqbn ∈ Zτ , νqbn ∈ Zτ and
(ηq + τνq)bn ∈ Zτ , for all q and n.

• When β = δ, ζ = ei 2π
8 and χ = δ − 1.

q = 0 1 2 3

(ηq, νq) = (1, 0) (0, 1) (−1, δ − 1) (−δ + 1, 1)

ηq + νqχ = 1 δ − 1 1 0 ,
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together with (ηq+4, νq+4) = (−ηq,−νq). Hence

ζqΓ1(δ)⊂Γ1(δ) +
(
{0,±(1− 1

δ
),±2(1− 1

δ
)}+ {0,±(1− 1

δ
),±2(1− 1

δ
)}ζ

)

⊂ Γ1(δ)

δ3
.

Note that δ− 1 =
√

2 is not a δ-integer. Its δ-expansion is 〈δ− 1〉δ = 1 · 1. It turns out that only
ζ, ζ5, ζ4 and 1 are in Γ1(δ).

• When β = θ, ζ = ei 2π
12 and χ = θ − 2.

q = 0 1 2 3 4 5

(ηq, νq) = (1, 0) (0, 1) (−1, θ − 2) (−θ + 2, 2) (−2, θ − 2) (−θ + 2, 1)

ηq + νqχ = 1 θ − 2 2 θ − 2 1 0 ,

together with (ηq+6, νq+6) = (−ηq,−νq). Note that θ − 2 =
√

3 is not a θ-integer. Moreover, the
θ-expansion of θ − 2 is infinite: 〈θ − 2〉θ = 1 · (2)ω. Then, only ζ, ζ6, ζ7 and 1 are in Γ1(θ).
Let us introduce the decorated θ-lattice Γ̃1(θ), as we have done in the one-dimensional case
(Equation (4)),

Γ1(θ) ⊂ Γ̃1(θ) = Z̃θ + Z̃θζ .

Since θ − 2 = 2− 1/θ, then all ζq are in Γ̃1(θ), and

ζqΓ1(θ)⊂Γ1(θ) +
(
{0,±1

θ
,±2

θ
}+ {0,±1

θ
,±2

θ
}ζ

)
(11)

⊂ ˜̃
Γ1(θ) ≡ ˜̃Zθ +

˜̃Zθζ ,

where
˜̃Zθ = Zθ + {0,±1/θ,±2/θ}.

4.3 Translational properties

They are deduced from Equations (2) and (4). In Case 1,

Γq(β) + Γq(β) ⊂ Γq(β)/β2 ,

and in Case 2,

Γq(β) + Γq(β) ⊂ Γ̃q(β) .
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5 A plane-group for beta-lattices

Since beta-lattices of the type Γq(β) are not rotationally and translationally invariant, we shall
enforce invariance by changing the usual additive and multiplicative laws by the beta-addition
and the quasi-multiplication.

5.1 A point-group for beta-lattices in the plane

Explicit calculations of internal rotation actions on Γ1(β), referred to as beta-rotations, are given
in the Appendix. Note that since the quasi-multiplication is not distributive with respect to
beta-addition, we find several candidates for internal rotational operators on Γ1(β). The choice
for the beta-rotations presented in the following proposition is driven by consistency property.
Other internal rotational operator are not consistent with Euclidian rotations!

We formally imitate the expressions of successive rotations given by Equation (10), by replacing
in the equations, + and − by ⊕ and ª, and × by ⊗, when necessary. Proposition 2 below defines
the beta-rotations on Γ1(β).

Proposition 2 • When β = τ , with the notations of (9), the following 10 operators rq, q =
0, 1, . . . , 9, leave Γ1(τ) invariant:

rq ¯ (bm + bnζ) = ηqbm ª νqbn + (νqbm ⊕ (ηq + τνq)bn)ζ.

• When β = δ, the following operators leave Γ1(δ) invariant:

r1 ¯ (bm + bnζ) = −bn + (bm ⊕ δbn ª bn)ζ = −bn + bm+2n−2ρS(n)ζ

r2 ¯ (bm + bnζ) =−(bm ⊕ δbn ª bn) + (δbm ª bm ⊕ bn)ζ = −bm+2n−2ρS(n) + b2m+n−2ρS(m)ζ

r3 ¯ (bm + bnζ) = −(δbm ª bm ⊕ bn) + bmζ = −b2m+n−2ρS(m) + bmζ .

• When β = θ, the following operators leave Γ1(θ) invariant:

r1 ¯ (bm + bnζ) = −bn + (bm ⊕ θbn ª 2bn)ζ = −bn + bm+2n−ρS(n)ζ

r2 ¯ (bm + bnζ) = −(bm ⊕ θbn ª 2bn) + (θbm ª 2bm ⊕ 2bn)ζ = −bm+2n−ρS(n) + b2m+2n−ρS(m)ζ

r3 ¯ (bm + bnζ) =−(θbm ª 2bm ⊕ 2bn) + (2bm ⊕ θbn ª 2bn)ζ = −b2m+2n−ρS(m) + b2m+2n−ρS(n)ζ

r4 ¯ (bm + bnζ) = −(2bm ⊕ θbn ª 2bn) + (θbm ª 2bm ⊕ bn)ζ = −b2m+2n−ρS(m) + b2m+n−ρS(n)ζ

r5 ¯ (bm + bnζ) = −(θbm ª 2bm ⊕ bn) + bmζ = −bn+2m−ρS(m) + bmζ .
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For β = τ , δ or θ, let the composition rule of these operators on Γ1(β) be defined by

(rr′)¯ z = r ¯ (r′ ¯ z) ,

and denote by Id the identity and by ι the space inversion

ι¯ z = −z .

Then, the composition rule (r, r′) → rr′ is associative and the following identities hold: r0 = Id
and rq+N/2 = ιrq = rqι for q = 0, 1, . . . , N

2
− 1, where N is the symmetry order of β.

Lemma 5 Beta-rotations defined in Proposition 2 on Γ1(β) are compatible with rotations when
β assumes one of the specified values τ , δ and θ.

Proof. We deduce from Equation (6) and Equation (8) that beta-rotations have minimal dis-
tortion property with respect to rotation: let zm,n = bm + bnζ ∈ Γ1(β), then

• β = τ , ζqzm,n − rq ¯ zm,n ∈ {0,±(1− 1
τ
)}+ {0,±(1− 1

τ
)}ζ,

• β = δ, ζqzm,n − rq ¯ zm,n ∈ {0,±(1− 1
δ
),±2(1− 1

δ
)}+ {0,±(1− 1

δ
),±2(1− 1

δ
)}ζ,

• β = θ, ζqzm,n − rq ¯ zm,n ∈ {0,±1
θ
,±2

θ
}+ {0,±1

θ
,±2

θ
}ζ.

Proposition 2 shows that beta-rotations can be decomposed in terms of beta-additions and quasi-
multiplications. Compatibility of beta-rotation with euclidian rotation is thus a consequence of
+-compatibility of beta-addition and ×-compatibility of quasi-multiplication.

Computing of composition of any two of such beta-rotations rq yields the following important
result.

Proposition 3 For β = τ , δ and θ and for N = 10, 8 and 12 respectively, let <N = <N(β)
denote the semi-group freely generated by all rq, q ∈ {0, 1, . . . , N − 1}. Among all beta-rotations,
only r0, r1, rN/2−1, rN/2+1, rN−1, ι have their inverse in <N .

Proof. The following identities are straightforwardly checked

r1rN/2−1 = rN/2−1r1 = rN/2+1rN−1 = rN−1rN/2−1 = ι,

r1rN−1 = rN−1r1 = rN/2−1rN/2+1 = rN/2+1rN/2−1 = r0 .

A case study of all possible combinations of rq shows that no other such operators are invertible.

An immediate consequence is the existence of a symmetry group for Γ1(β), i.e. a group of planar
transformations leaving Γ1(β) invariant.

Theorem 1 For β = τ , δ and θ, the group RN = RN(β), freely generated by the four element
set {r0, ι, r1, rN/2−1}, is a symmetry group for the beta-lattice Γ1(β). It is called the symmetry
point-group of Γ1(β).
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Proof. An easy computation shows that the elements of RN are invertible. Associativity of the
law of internal composition of elements of RN is a consequence of Proposition 2.

5.2 A plane-group for beta-lattices Γ1(β)

We now introduce into the present formalism the beta-translations acting on Γ1(β).

Proposition 4 Let z0 = bm0 + bn0ζ be an element of the beta-lattice Γ1(β). There corresponds
to it the internal action tz0 : Γ1(β) 7→ Γ1(β)

tz0(z) = z ⊕ z0
def
= bm ⊕ bm0 + (bn ⊕ bn0)ζ.

The set of beta-translations forms an abelian group isomorphic to the beta-lattice Γ1(β) considered
itself as a group for the law ⊕. For this reason it will be also denoted by Γ1(β).

Proof. The beta-translation is a simple two-dimensional generalization of the one-dimensional
beta-addition.

As a direct generalization of one-dimensional beta-addition, it is obvious that beta-translation
has minimal distortion property with respect to translation, and is compatible with it. Using
Proposition 4, we come to the main result of this article.

Theorem 2 For β = τ , δ and θ, and for N = 10, 8 and 12 respectively, the group SN = SN(β)
freely generated by the five-element set {r0, ι, r1, rN

2
−1, t1} is a symmetry group for the beta-lattice

Γ1(β). This group is the semi-direct product of Γ1(β) and RN

Sn = Γ1(β)oRN

with the composition rule

(b, R)(b′, R′) = (b⊕R¯ b′, RR′).

In the present context, SN is called the symmetry plane-group of Γ1(β).

The action of an element of SN on Γ1(β) is thus defined as

(b, R) ¦ z = b⊕R¯ z = tb(R¯ z) ∈ Γ1(β).

Proof. An easy computation shows that the elements of SN are invertible. Associativity of
the law of internal composition of elements of RN is a consequence of Proposition 2 and of
Theorem 1.
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5.3 Tile transformations using internal operations on Γ1(τ)

We would like to illustrate the action of Sn on Γ1(β), in the case of τ , by showing how a tile of
Γ1(τ) is transformed under the action of an element of S10.

Let z = bm + bnζ ∈ Γ1(τ). An elementary quadrilateral tile on z is the following

T(z) = {z, z ⊕ 1, z ⊕ ζ, z ⊕ (1 + ζ)} .

From the definition of Γ1(τ), we trivially see that their exist four kinds of elementary tiles, which
we shall denote by LL, LS, SL and SS, as a reference to the length of their edges (see Figure 5).

Fig. 5. Elementary quadrilateral tiles for the τ -lattice Γ1(τ). From left to right: LL, LS, SL, SS. See
also Figure 2.

In case of a translation operation by z0, tz0 , the elementary quadrilateral tile T(z) is transformed
into another elementary quadrilateral tile, whether of the same kind or of another kind, according
to

tz0(T(z)) = T(z ⊕ z0) = z0 ⊕ {z, z ⊕ 1, z ⊕ ζ, z ⊕ (1 + ζ)} .

Fig. 6. Rotation operator r1 applied to elementary tiles of the τ -lattice Γ1(τ), T(0), T(1) (up), T(ζ)
and T(1 + ζ) (down). Note how the tiles are deformed, by this operation, in order for the vertices to
remain in Γ1(τ). The arrows indicate the vertices of the new tile in which are mapped the vertices of
the original tile.

Another interesting transformation arises when one applies the rotation operator r1 on T(z) and

19



around one of the vertex of T(z). For instance, the rotation around z is given by

tz(r1 ¯ t−z(T(z))) = {z, z ⊕ ζ, z ⊕ (−1 + τζ), z ⊕ (−1 + τ 2ζ)} .

Examples of such rotation operations are displayed on Figure 6. This operation not only rotates,
but distorts the tiles, in general. Therefore, the beta-rotated tile is not elementary anymore.

6 Asymptotic properties

An interesting feature of beta-lattices is that they behave like lattices asymptotically.

Lemma 6 The asymptotic behavior of the counting function ρS is given by

ρS(n) ≈
|n|→∞

(
1− 1

β

)
n

a
, (Case 1),

ρS(n) ≈
|n|→∞

n

β
, (Case 2).

Proof. Case 1. The proof is based on the development of integers in the linear system U =
(uq)q∈N. We have n =

∑k
i=0 uidi. Then ρS(n) =

∑k
i=0 ρS(ui)di =

∑k
i=0

ui

a
(1 − ui−1/ui)di. When

n →∞ we know that ui−1/ui → 1/β and ρS(n) ≈ 1
a
(1−1/β)

∑k
i=0 uidi ≈ n

a
(1−1/β), as n →∞.

Case 2. As in the first case, the proof is based on the development of integers in (uq): n =∑k
i=0 uidi, ρS(n) =

∑k
i=0 ρS(ui)di =

∑k
i=0 ui−1di =

∑k
i=0

ui

a
(1+ui−2/ui)di. When n →∞ we know

that ui−2/ui = ui−2

ui−1

ui−1

ui
= 1/β2 = a

β
− 1. therefore ρS(n) ≈ 1

β

∑k
i=0 uidi = n

β
, as n →∞.

Lemma 6 tells us what is the asymptotic behavior of beta-integers for large n, and of the mul-
tiplication ⊗ for large m and n. From Equation (7) and Lemma 6 is deduced the following
result.

Proposition 5 Let β be a quadratic PV unit number. Then the following asymptotic behaviour
of beta-integers holds true

bn ≈
|n|→∞

γn ,

bm ⊗ bn ≈
|m|,|n|→∞

γ2mn .

where

γ =





1− 1
a

(
1− 1

β

)2
= (a+2)β−a2−a−2

a
(Case 1),

1− 1
β2 = a(β − a) + 2 (Case 2).

Proof. Case 1. Any beta-integer bn can be written bn = n− ρS(n)(1− 1/β). When n becomes
large, we can replace ρS(n) by its asymptotic value. We then have bn ≈ n(1− 1

a
(1− 1/β)2) = γn.
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Case 2. In the same fashion, we have bn = n−ρS(n)1/β, and by replacing ρS(n) by its asymptotic
value for large n we obtain bn = n(1− 1/β2) = γn.
The second part of the proposition is a direct consequence of the first part.

We then almost recover the definition of multiplication we were thinking about at the beginning
of Section 3.5, left alone that in both cases we have a contraction of the resulting index by a factor
γ < 1. We should notice that the multiplication ⊗ is asymptotically associative and distributive
with respect to the addition ⊕. In this sense we can say that Zβ is asymptotically a ring

bm ⊗ (bn ⊕ bp)− bm ⊗ bn ⊕ bm ⊗ bp ≈
|m|,|n|,|p|→∞

0 ,

bm ⊗ (bn ⊗ bp)− (bm ⊗ bn)⊗ bp ≈
|m|,|n|,|p|→∞

0 .

Note that m, n and p must be such that m+n and m+p are large numbers, otherwise the above
equations are not true.

Consequently we compute the asymptotic behavior of rotational internal laws of beta-lattices, as
defined in Section 5.1 in the studied cases.

• When β = τ , we have for invertible operators

r1 ¯ (bm + bnζ) ≈
|m|,|n|→∞

γ(−n + (m + τn)ζ) ,

r4 ¯ (bm + bnζ) ≈
|m|,|n|→∞

γ(−τm− n−mζ) .

• When β = δ, we have for invertible operators

r1 ¯ (bm + bnζ) ≈
|m|,|n|→∞

γ(−n + (m + (δ − 1)n)ζ) ,

r3 ¯ (bm + bnζ) ≈
|m|,|n|→∞

γ(−(δ − 1)m− n + mζ) .

• When β = θ, we have for invertible operators

r1 ¯ (bm + bnζ) ≈
|m|,|n|→∞

γ(−n + (m + (θ − 2)n)ζ)

r5 ¯ (bm + bnζ) ≈
|m|,|n|→∞

γ(−(θ − 2)m− n + mζ) .

At this point one should be aware that these asymptotic beta-rotations are equivalent to rotations
for large |m| and |n|, and an easy computation shows, zm,n ∈ Γ1(β)
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ζzm,n − r1 ¯ zm,n ≈
|m|,|n|→∞

0 ,

ζN/2−1zm,n − rN/2−1 ¯ zm,n ≈
|m|,|n|→∞

0 ,

with N = 10, 8 and 12.

7 Conclusion

The main result of this article is the construction of a symmetry plane-group for beta-lattices
for three quadratic PV units. Though preliminary, this study shows the richness of the beta-
lattices as far as all the operations of the plane-group can be made arithmetically explicit. Many
questions seem to be open, such as the number of possible plane-groups leaving a beta-lattice
invariant. Another important issue is to determine whether there is or not a metric left invariant
under the action of such groups. It has been shown that a large class of point sets, such as model
sets, can be embedded in beta-lattices [8]. A question related to distortion of distances is the
action of beta-rotations and beta-translations over a point set embedded in a beta-lattice and
over the tiling associated to this point set. The point group RN(β) also deserves to be carefully
studied. The link between beta-lattices and the class of finitely generated modules over ordered
rings would deserves to be handled nicely in the framework of the Artin-Schreier theory. The case
of PV of higher degree remains open. The present contribution shows the potentiality offered by
the class of beta-lattices to provide structure models of more general quasiperiodic crystals, and
possibly to predict new crystals.

Appendix: Explicit internal rotations actions on beta-lattices

In this section we make the beta-rotation explicit for the quasicrystallographic numbers τ , δ,
and θ, and for all the corresponding q, the remaining beta-rotation being deduced from them
by combining with space inversion. We give the resulting integer indexes in terms of m,n, and
the counting function ρS as all involved relations have been introduced in Equation (6) and
Equation (7).

Case of the τ -lattice Γ1(τ)

r1 ¯ (bm + bnζ) = b−n + bm+2n−ρS(n)ζ

r2 ¯ (bm + bnζ) = b−m−2n+ρS(n) + b2(m+n)−ρS(m)−ρS(n)ζ

r3 ¯ (bm + bnζ) = b−2(m+n)+ρS(m)+ρS(n) + b2m+n−ρS(m)ζ

r4 ¯ (bm + bnζ) = b−2m−n+ρS(m) + bmζ
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Case of the δ-lattice Γ1(δ)

For the δ-rotations we would like to play the same game of formal imitation of Equation (10) as
in the case of τ . The case of δ however is slightly more complicated since ηqbn and νqbn are not
in Zδ. When we compute the rotation of an arbitrary element of Γ1(δ), we need to determine
the value of (δ− 1)bn, which is of course not a δ-integer in the general case. Recall that ⊗ is not
distributive with respect to ⊕. Therefore, we have to replace (δ−1)bn either by (δª1)⊗bn = b2n

or by δbnª bn = b2n−ρS(n) (recall that from self similarity of δ-integers we have δ⊗ bn = δbn). We
then have to make a choice about which operation to choose to build the point-group of Γ1(δ).
We chose to replace (δ − 1)bn by δbn ª bn in Section 5, since this case satisfies the consistency
property. Other operations may be interesting. For example, the other internal rotation laws do
not satisfy the consistency property and do not have the same asymptotic behavior.

r1 ¯ (bm + bnζ) =




−bn + bm+2n−ρS(n)ζ

−bn + bm+2nζ

r2 ¯ (bm + bnζ) =





−bm+2n−ρS(n) + b2m+n−ρS(m)ζ

−bm+2n + b2m+n−ρS(m)ζ

−bm+2n−ρS(n) + b2m+nζ

−bm+2n + b2m+nζ

r3 ¯ (bm + bnζ) =




−b2m+n−ρS(m) + bmζ

−b2m+n + bmζ

Case of the θ-lattice Γ1(θ)

As in the case of the δ-lattice, we have to decide which operation to use to build the point-group
of Γ1(θ) because of the factor (θ − 2)bn, introduced in the computation of rotations of Γ1(θ).
Once again, we have replaced (θ − 2)bn by θbn ª 2⊗ bn = b2n−ρS(n) in Section 5.2. We give now
all possibilities.
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r1 ¯ (bm + bnζ) =




−bn + bm+2n−ρS(n)ζ

−bn + bm+2nζ

r2 ¯ (bm + bnζ) =





−bm+2n−ρS(n) + b2m+2n−ρS(m)ζ

−bm+2n + b2m+2n−ρS(m)ζ

−bm+2n−ρS(n) + b2m+2nζ

−bm+2n + b2m+2nζ

r3 ¯ (bm + bnζ) =





−b2m+2n−ρS(m) + b2m+2n−ρS(n)ζ

−b2m+n + b2m+2n−ρS(n)ζ

−b2m+2n−ρS(m) + b2m+2nζ

−b2m+2n + b2m+2nζ

r4 ¯ (bm + bnζ) =





b2m+2n−ρS(n) + bn+2m−ρS(m)ζ

b2m+2n + bn+2m−ρS(m)ζ

b2m+2n−ρS(n) + bn+2mζ

b2m+2n + bn+2mζ

r5 ¯ (bm + bnζ) =




−b2m+n−ρS(m) + bmζ

−b2m+n + bmζ
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