55 research outputs found

    Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas

    Get PDF
    Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3–6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level

    The United Kingdom and the Netherlands maternity care responses to COVID-19: A comparative study

    Get PDF
    BackgroundThe national health care response to coronavirus (COVID-19) has varied between countries. The United Kingdom (UK) and the Netherlands (NL) have comparable maternity and neonatal care systems, and experienced similar numbers of COVID-19 infections, but had different organisational responses to the pandemic. Understanding why and how similarities and differences occurred in these two contexts could inform optimal care in normal circumstances, and during future crises.AimTo compare the UK and Dutch COVID-19 maternity and neonatal care responses in three key domains: choice of birthplace, companionship, and families in vulnerable situations.MethodA multi-method study, including documentary analysis of national organisation policy and guidance on COVID-19, and interviews with national and regional stakeholders.FindingsBoth countries had an infection control focus, with less emphasis on the impact of restrictions, especially for families in vulnerable situations. Differences included care providers’ fear of contracting COVID-19; the extent to which community- and personalised care was embedded in the care system before the pandemic; and how far multidisciplinary collaboration and service-user involvement were prioritised.ConclusionWe recommend that countries should 1) make a systematic plan for crisis decision-making before a serious event occurs, and that this must include authentic service-user involvement, multidisciplinary collaboration, and protection of staff wellbeing 2) integrate women’s and families’ values into the maternity and neonatal care system, ensuring equitable inclusion of the most vulnerable and 3) strengthen community provision to ensure system wide resilience to future shocks from pandemics, or other unexpected large-scale events

    A nationwide study of adults admitted to hospital with diabetic ketoacidosis or hyperosmolar hyperglycaemic state and COVID‐19

    Get PDF
    AimsTo investigate characteristics of people hospitalized with coronavirus-disease-2019 (COVID-19) and diabetic ketoacidosis (DKA) or hyperosmolar hyperglycaemic state (HHS), and to identify risk factors for mortality and intensive care admission.Materials and methodsRetrospective cohort study with anonymized data from the Association of British Clinical Diabetologists nationwide audit of hospital admissions with COVID-19 and diabetes, from start of pandemic to November 2021. The primary outcome was inpatient mortality. DKA and HHS were adjudicated against national criteria. Age-adjusted odds ratios were calculated using logistic regression.ResultsIn total, 85 confirmed DKA cases, and 20 HHS, occurred among 4073 people (211 type 1 diabetes, 3748 type 2 diabetes, 114 unknown type) hospitalized with COVID-19. Mean (SD) age was 60 (18.2) years in DKA and 74 (11.8) years in HHS (p < .001). A higher proportion of patients with HHS than with DKA were of non-White ethnicity (71.4% vs 39.0% p = .038). Mortality in DKA was 36.8% (n = 57) and 3.8% (n = 26) in type 2 and type 1 diabetes respectively. Among people with type 2 diabetes and DKA, mortality was lower in insulin users compared with non-users [21.4% vs. 52.2%; age-adjusted odds ratio 0.13 (95% CI 0.03-0.60)]. Crude mortality was lower in DKA than HHS (25.9% vs. 65.0%, p = .001) and in statin users versus non-users (36.4% vs. 100%; p = .035) but these were not statistically significant after age adjustment.ConclusionsHospitalization with COVID-19 and adjudicated DKA is four times more common than HHS but both associate with substantial mortality. There is a strong association of previous insulin therapy with survival in type 2 diabetes-associated DKA
    corecore