16 research outputs found

    Efficacy and safety of once-monthly pasireotide in Cushing's disease: A 12 month clinical trial

    Get PDF
    漏 2017 Elsevier Ltd. Background: Cushing's disease is a rare debilitating endocrine disorder for which few prospective interventional studies have been done. We report results of the first phase 3 trial assessing long-acting intramuscular pasireotide in patients with Cushing's disease. Methods: In this phase 3 clinical trial we recruited patients aged 18 years or older with persistent, recurrent, or de-novo (non-surgical candidates) Cushing's disease who had a mean urinary free cortisol (mUFC) concentration (from three 24 h samples) of 1路5-5路0 times the upper limit of normal (ULN), a normal or greater than normal morning plasma adrenocorticotropic hormone concentration, and a pituitary source of Cushing's syndrome, from 57 sites across 19 countries. Exclusion criteria included previous pasireotide treatment, mitotane therapy within 6 months, and pituitary irradiation within 10 years. We randomly allocated patients 1:1 (block size of four) using an interactive-response-technology system to intramuscular pasireotide 10 mg or 30 mg every 4 weeks for 12 months (in the core phase). We stratified randomisation by screening mUFC concentration (1路5 to < 2路0 脳 ULN and 2路0-5路0 脳 ULN). The dose could be uptitrated (from 10 mg to 30 mg or from 30 mg to 40 mg) at month 4 if the mUFC concentration was greater than 1路5 脳 ULN, and at month 7, month 9, or month 12 if the mUFC concentration was greater than 1路0 脳 ULN. Investigators, patients, site personnel, and those assessing outcomes were masked to dose group allocation. The primary endpoint was the proportion of patients in each group with an mUFC concentration of less than or equal to the ULN at month 7. Efficacy analyses were based on intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01374906. Findings: Between Dec 28, 2011, and Dec 9, 2014, we randomly allocated 150 patients to receive pasireotide 10 mg (74 [49%] patients) or 30 mg (76 [51%] patients). The primary efficacy endpoint was met by 31 (41路9% [95% CI 30路5-53路9]) of 74 patients in the 10 mg group and 31 (40路8% [29路7-52路7] ) of 76 in the 30 mg group. The most common adverse events were hyperglycaemia (36 [49%] in the 10 mg group and 36 [47%] in the 30 mg group), diarrhoea (26 [35%] and 33 [43%] ), cholelithiasis (15 [20%] and 34 [45%] ), diabetes mellitus (14 [19%] and 18 [24%] ), and nausea (15 [20%] and 16 [21%] ). Serious adverse events suspected to be study drug related were reported in eight (11%) patients in the 10 mg group and four (5%) in the 30 mg group. Two (3%) patients in the 30 mg group died during the study (pulmonary artery thrombosis and cardiorespiratory failure); neither death was judged to be related to the study drug. Interpretation: Long-acting pasireotide normalised mUFC concentration in about 40% of patients with Cushing's disease at month 7 and had a similar safety profile to that of twice-daily subcutaneous pasireotide. Long-acting pasireotide is an efficacious treatment option for some patients with Cushing's disease who have persistent or recurrent disease after initial surgery or are not surgical candidates, and provides a convenient monthly administration schedule. Funding: Novartis Pharma AG

    Embryo-scale, single-cell spatial transcriptomics

    No full text
    Spatial patterns of gene expression manifest at scales ranging from local (e.g., cell-cell interactions) to global (e.g., body axis patterning). However, current spatial transcriptomics methods either average local contexts or are restricted to limited fields of view. Here, we introduce sci-Space, which retains single-cell resolution while resolving spatial heterogeneity at larger scales. Applying sci-Space to developing mouse embryos, we captured approximate spatial coordinates and whole transcriptomes of about 120,000 nuclei. We identify thousands of genes exhibiting anatomically patterned expression, leverage spatial information to annotate cellular subtypes, show that cell types vary substantially in their extent of spatial patterning, and reveal correlations between pseudotime and the migratory patterns of differentiating neurons. Looking forward, we anticipate that sci-Space will facilitate the construction of spatially resolved single-cell atlases of mammalian development

    Single-nucleus and single-cell transcriptomes compared in matched cortical cell types.

    No full text
    Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues

    Shared and distinct transcriptomic cell types across neocortical areas

    Full text link
    The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (纬-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.We thank M. Chillon Rodrigues for providing CAV2-Cre, A. Karpova for providing rAAV2-retro, A. Williford for technical assistance, and the Transgenic Colony Management and Animal Care teams for animal husbandry. This work was funded by the Allen Institute for Brain Science, and by US National Institutes of Health grants R01EY023173 and U01MH105982 to H.Z. We thank the Allen Institute founder, P. G. Allen, for his vision, encouragement and support. (Allen Institute for Brain Science; R01EY023173 - US National Institutes of Health; U01MH105982 - US National Institutes of Health)Accepted manuscrip

    Conserved cell types with divergent features in human versus mouse cortex.

    No full text
    Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain
    corecore