27 research outputs found

    The role of genetically engineered soybean and Amaranthus weeds on biological and reproductive parameters of Spodoptera cosmioides (Lepidoptera: Noctuidae)

    Get PDF
    BACKGROUND: In soybean fields containing insecticide- and herbicide-resistant genetically engineered varieties, some weed species have increasingly become difficult to manage and may favor the population growth of secondary pests like Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae). To test this hypothesis, we measured life-history traits, population growth parameters and adult nutrient content of S. cosmioides reared on foliage from four Amaranthus species, from Cry1Ac Bt and non-Bt soybean varieties, and on meridic artificial diet. RESULTS: Larvae reared on A. palmeri and A. spinosus had a shorter development time (5–7 days) than larvae raised on the soybean varieties and A. hybridus. Armyworm survival probability was zero on A. viridis and highest (80% and 71%) on soybeans and A. palmeri. The latter and the artificial diet produced the heaviest larvae and pupae, in contrast to the non-Bt soybean variety. Body nutrient content diverged mostly for adults reared on artificial diet compared with those raised on the soybean varieties. The intrinsic rate of population increase (overall fitness) was 27.88% higher for the armyworms on A. palmeri, Cry1Ac Bt soybean and artificial diet compared with those on non-Bt soybean, A. spinosus and A. hybridus. CONCLUSIONS: Cry1Ac soybean fields infested by some Amaranthus weeds, especially A. palmeri, are conducive to the population growth of S. cosmioides. Integrated pest management programs may be needed to properly manage S. cosmioides in soybean fields, with surveillance for population peaks and judicious control measures when needed.Fil: Páez Jerez, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia. Cátedra Terapéutica Vegetal; ArgentinaFil: Hill, Jorge Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia. Cátedra Terapéutica Vegetal; ArgentinaFil: Pereira, Eliseu J. G.. Universidade Federal de Viçosa.; BrasilFil: Medina Pereyra, Pilar. Fundación Miguel Lillo; ArgentinaFil: Vera, María Teresa. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia. Cátedra Terapéutica Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentin

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Development and characterization of resistance to the Cry1F toxin from Bacillus thuringiensis Berliner in the European corn borer, Ostrinia nubilalis (Huebner) Lepidoptera: Crambidae

    No full text
    A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the U.S. Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000-fold resistance to Cry1F, yet it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross resistance (7-fold) to Cry1Ac was observed. Dose-response of reciprocal parental crosses indicated that the resistance is autosomal and recessive. Backcross of the F1 generation with the selected strain revealed that a single locus or a set of tightly linked loci is responsible for the resistance. Greenhouse experiments with Cry1F-expressing corn plants indicated that some resistant larvae survived the high dose of toxin delivered by Cry1F-expressing plants although F1 progeny of susceptible by resistant crosses had fitness close to zero. Comparison of life-history traits and population growth rates of genotypes homozygous and heterozygous for resistance relative to susceptible genotypes indicated existence of weak fitness costs associated with resistance. Analyses of toxin binding using ligand-toxin immunoblotting and Surface Plasmon Resonance (SPR) to measure Cry1F binding to brush border membrane vesicles of midgut epithelia from susceptible and resistant larvae suggested that reduced binding was not associated with resistance. Additionally, no differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in the resistant strain. Although the resistance mechanism remains uncertain, there is no direct evidence that altered binding and proteolytic processing of toxin are involved. Considering the relatively narrow spectrum of cross resistance and the evidence of monogenic resistance, the resistance mechanism in this Cry1F-selected strain of O. nubilalis appears to be specific and maybe distinct from previously identified resistance mechanisms reported in other Lepidoptera. The results of this research have important practical implications for resistance management in that they suggest that Cry1Ab and Cry1F are compatible to resistance management, and more importantly, provide the first direct evidence that the high dose/refuge strategy currently in place to manage resistance in Cry1F-expressing maize is appropriate

    Ten years of Cry1Ac Bt soybean use in Argentina: Historical shifts in the community of target and non-target pest insects

    No full text
    Long-term changes in the insect communities in genetically modified (GM) crops expressing target-specific pesticidal proteins can occur and matter for optimized integrated pest management. Using monitoring data of commercial soybean fields from 2012 to 2022, we documented shifts in the abundance of target and non-target insects of the GM Cry1Ac Bacillus thuringiensis (Bt) soybean in two provinces of northwestern Argentina. Before adoption of Bt soybean, lepidopterans prevailed in the crop-associated insect-pest community. They were 65% more abundant than stink bugs and weevils, and the highest population levels (a mean of 169 individuals/plot) were recorded during the vegetative and early reproductive stages. After introducing Bt soybean, the abundance of target lepidopterans (i.e., erebids, heliothines, and plusiines) was the lowest in the 2017–2018 crop season. In the 2020–2021 and 2021–2022 seasons, Rachiplusia nu larvae (Lepidoptera: Noctuidae: Plusiinae) were recorded in Bt soybean fields. The numbers of non-target lepidopterans (Spodoptera spp.) increased year by year, and they were the prevailing lepidopteran species on Bt soybean in 2020–2021 and the R1-R5 (reproductive) soybean growth stages. Weevil abundance was higher on Bt soybean than non-Bt soybean. Stink bugs were more frequent in Tucumán than Catamarca, and their abundances were higher during R1-R5 than during vegetative and late-reproductive stages. The temperature, precipitation, and solar radiation conditioned the abundance of some of the pest complexes. Efforts to monitor and manage secondary or Bt-resistant populations of insect pests are necessary and should be continued and complemented with studies of pest-susceptibility shifts to inform sound locally adapted integrated pest management programs.Fil: Páez Jerez, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Hill, Jorge Guillermo. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pereira, Eliseu J. G.. Universidade Federal de Viçosa; BrasilFil: Alzogaray, Raúl Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Vera, María Teresa. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Get PDF
    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of S. frugiperda in Bt crops are discussed

    Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars

    Get PDF
    Abstract High adoption rates of single-gene Bacillus thuringiensis (Bt) Cry1Ac soybean impose selection pressure for resistance in the soybean looper, Chrysodeixis includens, a major defoliator in soybean and cotton crops. To anticipate and characterize resistance profiles that can evolve, soybean looper larvae collected from field crops in Brazil in 2013 were selected for resistance to Cry1Ac. Using two methods of selection viz., chronic exposure to Cry1Ac cotton leaves and the seven-day larval exposure to purified Cry1Ac on the artificial diet, 31 and 127-fold resistance was obtained in 11 and 6 generations of selection, respectively. The resistance trait had realized heritability of 0.66 and 0.72, respectively, indicating that most of the phenotypic variation in Cry1Ac susceptibility of the soybean looper larvae was due to additive genetic variation. The Cry1Ac-selected populations showed positive cross-resistance to Cry1Ab (6.7–8.7 fold), likely because these Bt toxins have a very similar molecular structure. Importantly, the Cry1Ac-selected populations became more susceptible to Cry2Aa and Cry1Fa, showing negative cross-resistance (up to 6-fold, P < 0.05). These results indicate that Cry1Ac, Cry1Fa, and Cry2A are compatible in a multi-toxin approach to minimize the risk of rapid adaptation of the soybean looper to Bt toxins

    Body size of <i>Spodoptera frugiperda</i> from five populations chronically exposed Bt Cry1Ab maize throughout larval development.

    No full text
    <p>Insects were collected from conventional (non-Bt) or Cry1Ab maize fields and their progeny were reared on leaves of isoline or Cry1Ab maize in the laboratory. A) Larval weight gain 14 days after hatching. B) Pupal weight 24 h after pupation. While means ± standard error with asterisk differ significantly (<i>P</i> < 0.05, Fisher’s protected Least Significant Difference procedure) between insects of the same population reared on non-Bt (i.e., control diet) or Bt Cry1Ab maize foliage, means ± standard error with <b>ns</b> indicate no significant difference.</p

    Fitness index for five <i>Spodoptera frugiperda</i> populations exposed to Bt Cry1Ab maize.

    No full text
    <p>Insects were collected from conventional non-Bt or Cry1Ab maize fields and their progeny were reared on leaves of non-Bt isoline (i.e. control diet) or Cry1Ab maize foliage (i.e., Cry1Ab diet) in the laboratory. Data are estimates of intrinsic rate of population growth obtained using the life table format, and error bars are 95% confidence intervals. While asterisk indicates significant difference (<i>P</i> < 0.05) by one-tailed <i>t</i>-test using variances estimated by the jackknife technique in SAS [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156608#pone.0156608.ref042" target="_blank">42</a>], <b>ns</b> indicate no significant difference.</p

    Life-History Traits of <i>Spodoptera frugiperda</i> Populations Exposed to Low-Dose Bt Maize

    No full text
    <div><p>Exposure to <i>Bacillus thuringiensis</i> (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm <i>Spodoptera frugiperda</i>, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50–70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of <i>S</i>. <i>frugiperda</i> in Bt crops are discussed.</p></div
    corecore