2 research outputs found

    Temperature differences are associated with malignancy on lung lesions: a clinical study

    Get PDF
    BACKGROUND: Although new endoscopic techniques can enhance the ability to detect a suspicious lung lesion, the primary diagnosis still depends on subjective visual assessment. We evaluated whether thermal heterogeneity of solid tumors, in bronchial epithelium, constitutes an additional marker for the diagnosis of benign and malignant lesions. METHODS: A new method, developed in our institute, is introduced in order to detect temperature in human pulmonary epithelium, in vivo. This method is based on a thermography catheter, which passes the biopsy channel of the fiber optic bronchoscope. We calculated the temperature differences (ΔT) between the lesion and a normal bronchial epithelium area on 22 lesions of 20 subjects, 50 – 65 years old. RESULTS: Eleven lesions were benign and 11 were malignant, according to the biopsy histology followed the thermography procedure. We found significant differences of ÄT between patients with benign and malignant tumor (0.71 ± 0.6 vs. 1.23 ± 0.4°C, p < 0.05). Logistic regression analysis showed that 1-Celsius degree differences between normal tissue and suspicious lesion six-fold the probability of malignancy (odds ratio = 6.18, 95% CI 0.89 – 42.7). Also, ΔT values greater than 1.05°C, constitutes a crucial point for the discrimination of malignancy, in bronchial epithelium, with sensitivity (64%) and specificity (91%). CONCLUSION: These findings suggest that the calculated ΔT between normal tissue and a neoplastic area could be a useful criterion for the diagnosis of malignancy in tumors of lung lesions

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore