109 research outputs found

    Formação do professor pesquisador na perspectiva do professor formador

    Get PDF
    The research represents a significant resource for teacher professional development and it should be promoted at the undergraduate level. However there are different conceptions of what it means to educate teacher as researcher. This paper discusses some results from a research that aimed to understand how teacher educators have developed the education of teacher as researcher. To this end, interviews were conducted with four teachers and eight last year students of four courses. The data were analyzed based on the principles of Critical Discourse Analysis (FAIRCLOUGH, 1995). The study set up that the teachers have different conceptions of what is research. They recognize its importance to the teaching activity as a way to update specific content and improve teaching practice. It was identified a didactic sequence used by the teachers, which may contribute to the consolidation of a training model based on research.A pesquisa representa um recurso significativo para o desenvolvimento profissional do professor e deve ser promovida no curso de graduação. Há, porém, diferentes concepções do que significa formar o professor pesquisador. Este artigo discute alguns resultados obtidos em uma pesquisa que teve como objetivo compreender como professores formadores têm desenvolvido a formação do professor pesquisador. Para isso, foram realizadas entrevistas com quatros professores e oito acadêmicos dos últimos anos de quatro cursos de licenciatura. Os dados foram analisados com base nos princípios da Análise Crítica do Discurso de Fairclough (1995). O estudo apontou que as professoras têm diferentes concepções do que é pesquisa. Reconhecem sua importância para a atividade docente como forma de atualizar os conteúdos específicos e de melhorar a prática pedagógica. Identifica-se uma sequência didática utilizada pelas professoras, que pode contribuir para a consolidação de um modelo de formação fundamentado na investigação

    Is there a role in acute kidney injury for FGF23 and Klotho?

    Get PDF
    ABSTRACT Cardio-renal syndrome is a clinical condition that has recently been well defined. In acute kidney disease, this interaction might trigger chronic processes determining the onset of cardiovascular events and the progression of chronic kidney disease. Moreover, the high mortality rate of acute kidney injury (AKI) is also linked to the fact that this condition is often complicated by dysfunctions of other organs such as lungs or heart, or is associated with septic episodes. In this context the role and the potential link between bone, heart and kidney is becoming an important topic of research. The aim of this review is to describe the cardiac alterations in the presence of AKI (cardiorenal syndrome type 3) and explore how bone can interact with heart and kidney in determining and influencing the trend of AKI in the short and long term. The main anomalies of mineral metabolism in patients with AKI will be reported, with specific reference to the alterations of fibroblast growth factor 23 and Klotho as a link between the bone–kidney–heart axis

    Impaired duodenal Palmitoylethanolamide release underlies acid-induced mast cells activation in Functional Dyspepsia

    Get PDF
    Acid hypersensitivity is claimed to be a symptomatic trigger in functional dyspepsia (FD); however, the neuroimmune pathway(s) and the mediators involved in this process have not been systematically investigated. Palmitoylethanolamide (PEA) is an endogenous compound, able to modulate nociception and inflammation, but its role in FD has never been assessed

    Harnessing NK Cells for Cancer Treatment

    Get PDF
    In the last years, natural killer (NK) cell-based immunotherapy has emerged as a promising therapeutic approach for solid tumors and hematological malignancies. NK cells are innate lymphocytes with an array of functional competences, including anti-cancer, anti-viral, and anti-graft-vs.-host disease potential. The intriguing idea of harnessing such potent innate immune system effectors for cancer treatment led to the development of clinical trials based on the adoptive therapy of NK cells or on the use of monoclonal antibodies targeting the main NK cell immune checkpoints. Indeed, checkpoint immunotherapy that targets inhibitory receptors of T cells, reversing their functional blocking, marked a breakthrough in anticancer therapy, opening new approaches for cancer immunotherapy and resulted in extensive research on immune checkpoints. However, the clinical efficacy of T cell-based immunotherapy presents a series of limitations, including the inability of T cells to recognize and kill HLA-Ineg tumor cells. For these reasons, new strategies for cancer immunotherapy are now focusing on NK cells. Blockade with NK cell checkpoint inhibitors that reverse their functional block may overcome the limitations of T cell-based immunotherapy, mainly against HLA-Ineg tumor targets. Here, we discuss recent anti-tumor approaches based on mAb-mediated blocking of immune checkpoints (either restricted to NK cells or shared with T cells), used either as a single agent or in combination with other compounds, that have demonstrated promising clinical responses in both solid tumors and hematological malignancie

    "Aging", sessualità e cinema nella cultura italiana del secondo dopoguerra

    Get PDF
    Special issue on "aging" and sexuality in the Italian culture

    SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention

    Get PDF
    Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease

    Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells

    Get PDF
    Abstract BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+) were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+) cells with enhanced self renewal and cardioprotection

    Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study

    Get PDF
    Aims Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the infarcted rat heart. Methods and Results CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/4 and Klf-4. CDCs (2×106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection immediately following reperfusion, then by systemic infusion (4×106) 2 days later. A control group (n = 7) was administered cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6 weeks, ejection fractions in control hearts had significantly decreased (47±2%), but this was not evident in CDC-treated hearts (56±3%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks. In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their differentiation along the cardiomyocyte lineage and the formation of new blood vessels. Conclusions CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function
    • …
    corecore