82 research outputs found

    Classification of current anticancer immunotherapies

    Get PDF
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Study of Polychlorinated Biphenyls as Potential Modifiers of Developmental Neurotoxicity of Methylmercury

    No full text
    The developing brain is the most susceptible target for methylmercury (MeHg) toxicity. Typical features of developmental MeHg neurotoxicity include the delayed onset of symptoms and the persistency of dysfunction. One of the factors which may modulate MeHg neurotoxicity is co-exposure to other neurotoxic pollutant, e.g. polychlorinated biphenyls (PCBs) from the same dietary sources. Because PCBs themselves can induce subtle neurodevelopmental deficiencies, recent epidemiological and research studies have focused on the potential hazard resulting from mixtures of PCBs and MeHg. This work summarizes our experimental findings on several endpoints of the cholinergic and aminergic systems in the developing rat brain, following two distinct perinatal co-exposure protocols involving low to moderate doses of MeHg and PCB153 or PCB126. The neurochemical modifications induced by either agent, alone or combined, involved monoamineoxidase type-B activity, biogenic amine levels (e.g., serotonin and dopamine), total cholinergic muscarinic receptors (MRs) and M1, M2 and M3 subtypes. The effects were brain region-, age- and gender-dependent. Some early-onset changes (weaning) persisted until puberty, while other alterations became manifest only at the advanced time point, when the brain levels of Hg, PCB153, and PCB126 had declined. The results of the combined exposure ruled out synergistic interactions between MeHg and PCB153 or PCB126 on every neurochemical endpoint tested. This applied to all pups regardless of the (i) regimen of exposure, (ii) gender, (iii) age, and (iv) brain area. The co-treatment with either PCB153 or PCB126 sometimes masked MeHg-induced changes on selected neurochemical endpoints. Nevertheless, this cannot be viewed as a protective effect. The final health effect may be masked at early time-points, but may become manifest later during life time.JRC.I.5-Physical and chemical exposure

    Bone microscopy: guiding knowledge from history to forensic medicine

    No full text
    Calcified tissues are well known microscopically, but the diagnostic potential of bone micro-anatomy is still underestimated. The shape and size of osteons or of lamellar bone are unique and fundamental for determining the species of origin of human remains, and for understanding age, disease, and trauma; thus micro-anatomy is crucial to many disciplines, from archaeology to forensic medicine. This presentation aims at illustrating and reviewing all such applications. The first question arising when studying skeletal remains is: “is it human?”. Macroscopic analysis alone can sometimes be insufficient in understanding if they belong to a human or to another animal; in such cases, the microscopic characteristics can be the only instrument capable of providing a reply, by evaluating the presence of osteons, their pattern and distribution, as well as the their metrical parameters [1]. Secondly, bone tissue formation as well as the constant bone remodeling process result in a strong correlation between the age of an individual and both the tissue pattern and the number of osteons per unit area in a bone cross-section, parameters on which most of the histological age-estimating methods are based. These methods are particularly important in distinguishing subadults from adults, and, among the latter, in estimating age where other methods result unsatisfactory [2]. Bone histology can also be diagnostic in the research for pathological diseases and traumatic events, especially with concern to the moment in which a trauma occurred [2]. Finally, the type and degree of microscopic damage can give some insight into the environmental surroundings in which the bone was, and a taphonomic profile useful for the verification of taphonomic events and clues on the post mortem interval of the sample [3]. All these contributions demonstrate that even just a small piece of bone, in fact a microscopic part of it, is fundamental and can sometimes be the only instrument for the correct interpretation of the story that human remains can tell

    The Difficult Task of Assessing Perimortem and Postmortem Fractures on the Skeleton: A Blind Text on 210 Fractures of Known Origin

    No full text
    this study aims at highlighting the difficulties and pitfalls a forensic anthropologist has to face when diagnosing bone fractures as perimortem and postmortem. Impact statement: any morphological and macroscopic evaluation on bone fractures has to be handled with care since the evaluation of a bone fracture as being peri or postmortem may be difficult, treacherous and at times observer-dependent and thus influenced by knowledge, intuition and training of the observer. If postmortem fractures can be detected more easily, on the other hand perimortem fractures can be wrongly identified, especially when spongy bone is involved and when time has taken its toll on the remains. In the field of forensic anthropology, the difference between perimortem and postmortem fractures is one of the most difficult challenges. Indicators of perimortality have been suggested (for example \u201cgreen\u201d aspect or colouring of the fractured margins) but most forensic anthropologist know how many times it may be impossible to reach a decision. Few studies have focused on the actual error anthropologists can run into when classifying bone fractures as post or perimortem. How many times will a postmortem or taphonomical fracture be mistaken for a perimortem fracture and viceversa? Which bones are the trickiest? The present study aims at verifying the error behind such a diagnosis by blind testing two experienced anthropologists (both trained as anthropologists, observer A with a 7 year working experience in the field and observer B with a 3 year working experience in the field) on 210 fractures of known origin. Four skeletons were selected from a skeletal series of 250 individuals who died in 1991 and whose skeletons were exhumed in 2001, unclaimed and thus available for scientific research according to Italian Mortuary Police Regulations. Of these four skeletons three had died in traffic accidents (case 1: pedestrian run over by a tram; case 2: pedestrian run over by a car; case 3: pedestrian run over by a truck, thus all presenting blunt force trauma) and one of natural causes. Autopsy reports were available for all with detailed descriptions of soft tissue and bone lesions. It was evident upon an initial examination of the skeletons (before the test) that several postmortem fractures were due to taphonomical events related to burial and exhumation; furthermore actual perimortem lesions (registered upon autopsy) had been evidently ruined by soil and other taphonomical variables. For all cases the number and site of bone fractures detected at autopsy in 1991 were recorded as well as those known to have been certainly caused by postmortem events (because not present at autopsy). The total number of fractures was 210. Then the two observers (forensic anthropologists) were asked to blindly score all lesions on the four skeletons as perimortem, postmortem or uncertain. Results were then evaluated by comparing the scores to the real perimortem or postmortem nature of the fracture. The results of the osteological analyses show the highest success rate for both observers in the correct identification of postmortem fractures, with percentages for correct identification between 75% and 100%. On the other hand, with perimortem fractures, the correct classification falls to a mean of 45%, with very minimum differences between observers (43.5% and 46%). In other words only 45% of all perimortem fractures were identified as such by the two observers. In 16.5% of perimortem fractures and in 7% of postmortem fractures the origin was defined as non assessable (uncertain) by the observers, and thus considered \u201cdubious\u201d. When observing the bones involved, the highest number of mistakes were noticed when the observer had to evaluate spongy bone (mostly ribs or bones of the pelvis). Much fewer errors were performed when evaluating fractures on long bones and skull. Globally, the present study clearly shows the difficulty and dangers of this crucial task. The correct identification of peri- and postmortem lesions is fundamental, but macroscopic and morphological criteria are still unsatisfactory, and sometimes misleading. The present results therefore should serve as a cautionary note concerning interpretation of peri and postmortem fractures as well as an invitation to search for novel methods of analysis (such as histology, immunochemistry, electronic microscopy), in order to find new tools towards a more comprehensive solution of this problem

    Single step determination of PCB 126 and 153 in rat tissues by using solid phase microextraction/gas chromatography-mass spectrometry: Comparison with solid phase extraction and liquid/liquid extraction

    No full text
    A simple and reliable solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) method was developed for the single-step determination of PCBs 126 and 153 in tat brain and serum, using liquid/liquid and solid phase extraction (SPE) as reference techniques. The multi-factor categorical experimental design used to study Simultaneously the main parameters and their interactions affecting the efficiency of the method, showed that the use of an 85 mu m PA exposed at 100, C for 40 min was the optimum sampling condition for both PCBs. SPME was then validated by studying its linear dynamic (over two orders of magnitude), limits of detection (brain: 2 ng/g, serum: 0.2 ng/g) and analytical precision that was within 9% for SPME in both brain and serum. Finally, the method was used to determine the brain and blood target dose in mothers and pups after oral exposure of the mothers. (C) 2009 Elsevier B.V. All rights reserved
    corecore