22 research outputs found

    Journal Staff

    Get PDF
    Primary Immunodeficiencies (PID) are genetically inherited disorders characterized by defects of the immune system, leading to increased susceptibility to infection. Due to the variety of clinical symptoms and the complexity of current diagnostic procedures, accurate diagnosis of PID is often difficult in daily clinical practice. Thanks to the advent of "next generation'' sequencing technologies and target enrichment methods, the development of multiplex diagnostic assays is now possible. In this study, we applied a selector-based target enrichment assay to detect disease-causing mutations in 179 known PID genes. The usefulness of this assay for molecular diagnosis of PID was investigated by sequencing DNA from 33 patients, 18 of which had at least one known causal mutation at the onset of the experiment. We were able to identify the disease causing mutations in 60% of the investigated patients, indicating that the majority of PID cases could be resolved using a targeted sequencing approach. Causal mutations identified in the unknown patient samples were located in STAT3, IGLL1, RNF168 and PGM3. Based on our results, we propose a stepwise approach for PID diagnostics, involving targeted resequencing, followed by whole transcriptome and/or whole genome sequencing if causative variants are not found in the targeted exons

    Functional loss of IKBE leads to NF-KB deregulation in aggressive chronic lymphocytic leukemia

    Get PDF
    NF-?B is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-?B pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes I?B?, a negative regulator of NF-?B in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced I?B? protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that I?B? loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-?B deregulation during lymphomagenesis. <br/

    Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia

    Get PDF
    NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis

    DNA repair genes are selectively mutated in diffuse large B cell lymphomas

    Get PDF
    DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis

    A Theory of Ethical Copyright

    Get PDF
    This dissertation puts forth a theory of ethical copyright. It considers the possibility of creating two new ethical functions of copyright law. These new functions would empower copyright law to protect the user’s collective right to make fair use of copyrighted materials and enforce the copyright holder’s responsibilities. Both proposals not only evince the cardinal importance of the public interest, but also open up new avenues of protecting and enhancing the public interest. Chapter One of the dissertation examines the ethical crisis looming large in copyright law and practice. Chapter Two considers the first new ethical function of copyright law by proposing that fair use should be redefined as a collective user right. Chapter Three discusses the second new ethical function of copyright law that will require the law to enforce copyright holders’ responsibilities. Chapter Four further explores how the ethical copyright theory can further promote the protection of the public interest, by embodying pluralistic values in copyright law and offering new approaches for dealing with the conflict of values in copyright law

    Automated Genotyping of Biobank Samples by Multiplex Amplification of Insertion/Deletion Polymorphisms

    No full text
    The genomic revolution in oncology will entail mutational analyses of vast numbers of patient-matched tumor and normal tissue samples. This has meant an increased risk of patient sample mix up due to manual handling. Therefore, scalable genotyping and sample identification procedures are essential to pathology biobanks. We have developed an efficient alternative to traditional genotyping methods suited for automated analysis. By targeting 53 prevalent deletions and insertions found in human populations with fluorescent multiplex ligation dependent genome amplification, followed by separation in a capillary sequencer, a peak spectrum is obtained that can be automatically analyzed. 24 tumor-normal patient samples were successfully matched using this method. The potential use of the developed assay for forensic applications is discussed

    Diagnostics of Primary Immunodeficiency Diseases : A Sequencing Capture Approach

    No full text
    Primary Immunodeficiencies (PID) are genetically inherited disorders characterized by defects of the immune system, leading to increased susceptibility to infection. Due to the variety of clinical symptoms and the complexity of current diagnostic procedures, accurate diagnosis of PID is often difficult in daily clinical practice. Thanks to the advent of "next generation'' sequencing technologies and target enrichment methods, the development of multiplex diagnostic assays is now possible. In this study, we applied a selector-based target enrichment assay to detect disease-causing mutations in 179 known PID genes. The usefulness of this assay for molecular diagnosis of PID was investigated by sequencing DNA from 33 patients, 18 of which had at least one known causal mutation at the onset of the experiment. We were able to identify the disease causing mutations in 60% of the investigated patients, indicating that the majority of PID cases could be resolved using a targeted sequencing approach. Causal mutations identified in the unknown patient samples were located in STAT3, IGLL1, RNF168 and PGM3. Based on our results, we propose a stepwise approach for PID diagnostics, involving targeted resequencing, followed by whole transcriptome and/or whole genome sequencing if causative variants are not found in the targeted exons

    Population data for insertion/deletion markers.

    No full text
    <p>Panels 1, 2 and 3 consist of approximately 18 target indels each, and are outlined in detail in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052750#pone.0052750.s004" target="_blank">Table S1</a>.</p
    corecore