17 research outputs found

    Two Fundamental Experimental Tests of Nonclassicality with Qutrits

    Get PDF
    We report two fundamental experiments on three-level quantum systems (qutrits). The first one tests the simplest task for which quantum mechanics provides an advantage with respect to classical physics. The quantum advantage is certified by the violation of Wright's inequality, the simplest classical inequality violated by quantum mechanics. In the second experiment, we obtain contextual correlations by sequentially measuring pairs of compatible observables on a qutrit, and show the violation of Klyachko et al.'s inequality, the most fundamental noncontextuality inequality violated by qutrits. Our experiment tests exactly Klyachko et al.'s inequality, uses the same measurement procedure for each observable in every context, and shows that the violation does not depend on the order of the measurements.Comment: 4 pages, 2 figure

    Analysis of boiling water reactor design and operating conditions effect on stability behaviour

    Get PDF
    It is well known that boiling water reactors can experience inadvertent power oscillations. When such instability occurs the core can oscillate in two different modes (in phase mode and out of phase mode). In the late 90’s a stability benchmark was created using the stability data obtained from the experiments at the Swedish nuclear power plant of Ringhals-1. Data was collected from the cycles 14, 15 , 16 and 17. Later on, this data was used to validate the various models and codes with the aim of predicting the instability behavior of the core and understand the triggers of such oscillations. The current trend of increasing reactor power density and relying on natural circulation for core cooling may have consequences for the stability of modern BWR’s designs. The objective of this work is to find the most important parameters affecting the stability of the BWRs and propose alternative stability maps. For this purpose a TRACE/PARCS model of the Ringhals-1 NPP will be used. Afterwards a selection of possible parameters and dimensionless numbers will be made to study its effect on stability. Once those parameters are found they will be included in the stability maps to make them more accurate.Outgoin

    Experimental implementation of a Kochen-Specker set of quantum tests

    Full text link
    The conflict between classical and quantum physics can be identified through a series of yes-no tests on quantum systems, without it being necessary that these systems be in special quantum states. Kochen-Specker (KS) sets of yes-no tests have this property and provide a quantum-versus-classical advantage that is free of the initialization problem that affects some quantum computers. Here, we report the first experimental implementation of a complete KS set that consists of 18 yes-no tests on four-dimensional quantum systems and show how to use the KS set to obtain a state-independent quantum advantage. We first demonstrate the unique power of this KS set for solving a task while avoiding the problem of state initialization. Such a demonstration is done by showing that, for 28 different quantum states encoded in the orbital-angular-momentum and polarization degrees of freedom of single photons, the KS set provides an impossible-to-beat solution. In a second experiment, we generate maximally contextual quantum correlations by performing compatible sequential measurements of the polarization and path of single photons. In this case, state independence is demonstrated for 15 different initial states. Maximum contextuality and state independence follow from the fact that the sequences of measurements project any initial quantum state onto one of the KS set's eigenstates. Our results show that KS sets can be used for quantum-information processing and quantum computation and pave the way for future developments.Comment: REVTeX, 15 pages, 4 figure

    Experimental fully contextual correlations

    Get PDF
    Quantum correlations are contextual yet, in general, nothing prevents the existence of even more contextual correlations. We identify and test a noncontextuality inequality in which the quantum violation cannot be improved by any hypothetical postquantum theory, and use it to experimentally obtain correlations in which the fraction of noncontextual correlations is less than 0.06. Our correlations are experimentally generated from the results of sequential compatible tests on a four-state quantum system encoded in the polarization and path of a single photon.Comment: REVTeX4, 6 pages, 3 figure

    The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants

    Get PDF
    Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. © 2014 Porcel et al

    Dynamics of Quantum Correlations with Photons : Experiments on bound entanglement and contextuality for application in quantum information

    No full text
    The rapidly developing interdisciplinary field of quantum information, which merges quantum and information science, studies non-classical aspects of quantum systems. These studies are motivated by the promise that the non-classicality can be used to solve tasks more efficiently than classical methods would allow. In many quantum informational studies, non-classical behaviour is attributed to the notion of entanglement. In this thesis we use photons to experimentally investigate fundamental questions such as: What happens to the entanglement in a system when it is affected by noise? In our study of noisy entanglement we pursue the challenging task of creating bound entanglement. Bound entangled states are created through an irreversible process that requires entanglement. Once in the bound regime, entanglement cannot be distilled out through local operations assisted by classical communication. We show that it is possible to experimentally produce four-photon bound entangled states and that a violation of a Bell inequality can be achieved. Moreover, we demonstrate an entanglement-unlocking protocol by relaxing the condition of local operations. We also explore the non-classical nature of quantum mechanics in several single-photon experiments. In these experiments, we show the violation of various inequalities that were derived under the assumption of non-contextuality. Using qutrits we construct and demonstrate the simplest possible test that offers a discrepancy between classical and quantum theory. Furthermore, we perform an experiment in the spirit of the Kochen-Specker theorem to illustrate the state-independence of this theorem. Here, we investigate whether or not measurement outcomes exhibit fully contextual correlations. That is, no part of the correlations can be attributed to the non-contextual theory. Our results show that only a small part of the experimental generated correlations are amenable to a non-contextual interpretation.At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 5: Submitted. Paper 6: Submitted.</p

    Analysis of Boiling Water Reactor Design and Operating Conditions Effect on Stability Behaviour

    No full text
    It is well known that boiling water reactors can experience inadvertent power oscillations. When such instability occurs the core can oscillate in two different modes (in phase mode and out of phase mode). In the late 90’s a stability benchmark was created using the stability data obtained from the experiments at the Swedish nuclear power plant of Ringhals-1. Data was collected from the cycles 14, 15 , 16 and 17. Later on, this data was used to validate the various models and codes with the aim of predicting the instability behavior of the core and understand the triggers of such oscillations. The current trend of increasing reactor power density and relying on natural circulation for core cooling may have consequences for the stability of modern BWR’s designs. The objective of this work is to find the most important parameters affecting the stability of the BWRs and propose alternative stability maps. For this purpose a TRACE/PARCS model of the Ringhals-1 NPP will be used. Afterwards a selection of possible parameters and dimensionless numbers will be made to study its effect on stability. Once those parameters are found they will be included in the stability maps to make them more accurate

    Analysis of boiling water reactor design and operating conditions effect on stability behaviour

    No full text
    It is well known that boiling water reactors can experience inadvertent power oscillations. When such instability occurs the core can oscillate in two different modes (in phase mode and out of phase mode). In the late 90’s a stability benchmark was created using the stability data obtained from the experiments at the Swedish nuclear power plant of Ringhals-1. Data was collected from the cycles 14, 15 , 16 and 17. Later on, this data was used to validate the various models and codes with the aim of predicting the instability behavior of the core and understand the triggers of such oscillations. The current trend of increasing reactor power density and relying on natural circulation for core cooling may have consequences for the stability of modern BWR’s designs. The objective of this work is to find the most important parameters affecting the stability of the BWRs and propose alternative stability maps. For this purpose a TRACE/PARCS model of the Ringhals-1 NPP will be used. Afterwards a selection of possible parameters and dimensionless numbers will be made to study its effect on stability. Once those parameters are found they will be included in the stability maps to make them more accurate.Outgoin

    Reply to 'Experimental bound entanglement?'

    No full text
    corecore